PULSE SPREADING IN MULTIMODE, PLANAR, OPTICAL FIBERS

J. A. Arnaud

Bell System Technical Journal, The  (Volume:53 ,  Issue: 8 ), pages 1599 – 1618, Oct. 1974

ABSTRACT

A dielectric slab can keep optical beams confined transversely in its plane if it is tapered, with the slab thickness having a maximum along some straight line. When the square of the local wave number of the slab (k2) is a quadratic function of the transverse coordinate (y), the rays in the plane of the slab are sinusoids whose optical length is almost independent of the amplitude. For thin slabs (2d « λ) as well as for thick slabs (2d » λ), pulse spreading is large because the ratio of the local phase to group velocity is strongly dependent on the distance (y) from axis. We show that pulse spreading is almost negligible, however, if the thickness of the slab is properly chosen. For example, if the slab thickness on axis is 2.5 micrometers and the refractive index of the slab is 1 percent higher than that of the surrounding medium, pulse spreading is only 0.05 nanosecond per kilometer at a wavelength of 1 micrometer. Pulses in clad fibers having the same width (0.2 millimeter) and carrying the same number of modes (15) spread 50 times faster. Splicing and matching to injection lasers may be easier with planar fibers than with conventional fibers. Low-dispersion planar fibers are therefore attractive when used in conjunction with sources that are multimoded in one dimension. Closed-form expressions are given for square-law and linear-law profiles.

LIEN VERS  L’ARTICLE : PULSE SPREADING IN MULTIMODE, PLANAR, OPTICAL FIBERS

Laisser un commentaire