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A dielectric slab can keep optical beams confined transversely in its
plane of it is tapered, with the slab thickness having a maximum along some
strazght line. When the square of the local wave number of the slab (k?) s
a quadratic function of the trazisverse coordinate (y), the rays in the plane
of the slab are sinusoids whose optical length is almost independent of the
amplitude. For thin slabs (2d < \) as well as jor thick slabs (2d > \),
pulse spreading is large because the ratio of the local phase to group velocity
is strongly dependent on the distance (y) from axis. We show that pulse
spreading 1s almost negligible, however, if the thickness of the slab is
properly chosen. For example, if the slab thickness on axis is 2.5 microm-
eters and the vefractive index of the slab is 1 percent higher than that of the
surrounding medium, pulse spreading ts only 0.05 nanosecond per kilome-
ler at a wavelength of | micrometer. Pulses in clad fibers having the same
width (0.2 millimeler) and carrying the same number of modes (135)
spread 50 limes faster. Splicing and matching to injection lasers may be
easter with planar fibers than with conventional fibers. Low-dispersion
planar fibers are therefore aitractive when used in conjunction with sources
that are multimoded in one dimension. Closed-form expressions are given
for square-law and linear-law profiles.

. INTRODUCTION

This introduction gives first a brief review of the general concepts
of pulse transmission in multimode waveguides,'* and subsequently
considers the case of planar structures that ensure transverse confine-
ment of the optical heams.

The most important parameters of optical fibers for communication
are loss (perhaps a few decibels per kilometer) and pulse spreading
(perhaps a few tens of nanoseconds per kilometer). Given these two
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parameters, the maximum repeater spacing and the transinission
capacity of the fiber are pretty much determined, considering the
limitations that presently exist in source power (L.E.D. or injection
lasers) and detector sensitivity (avalanche photodiodes). If the loss
is the limiting factor, a reduction in bandwidth allows an increase in
repeater spacing because of the increased receiver sensitivity, but only
by a modest distance. Inversely, baseband equalization allows the
transmission capacity to be increased at the expense of optical power,
but not by a very large factor. In this paper, we consider only the
problem of pulse spreading.

Consider first a single-mode waveguide; for instance, a rectan-
gular waveguide whose width is less than a wavelength. The wave
number 3 may be a rapidly varying function of w, particularly near
cut-off. The transit time of a pulse of radiation is equal to the ratio
LdB/dw of the path length L and the group velocity dw/dB. Because a
pulse of small duration has a broad frequency spectrum, some com-
ponents arrive ahead of the others if d3/dw varies with w; that is, if
d?8/dw? # 0. The pulse duration, r, is of the order of (Ld*8/dw)*. If
the waveguide is filled with a material having dispersion, the phe-
nomenon remains essentially the same. Single-mode pulse spreading
is small at optical frequencies when the carrier is almost monochro-
matic (e.g., injection lasers) because, for a given kind of waveguide,
single-mode pulse spreading is inversely proportional to the square
root of the frequency; that is, it is 100 times smaller at optical fre-
quencies than at microwave frequencies. This effect can therefore be
neglected.

A quite different mechanism for pulse spreading is found in multi-
mode waveguides (with modes of the order m = 0, 1, 2, -+ -) excited
by multimode sources. In most waveguides, different modes have
different group velocities. Thus, a pulse decomposes into a train of
pulses, one for each mode, having times of arrival LdB,./dw, m = 0,
1,2, -+ -. This effect has similarities with the multipath effects ob-
served in open space. Multimode pulse spreading is observed even
when a single mode is excited because, soon after, the power is trans-
ferred to other modes and back to the first mode, as a result of the
irregularities of the fiber or of the bends (see Ref. 2 and references
therein). In this paper, we assume that the fiber is perfectly straight
and uniform, and investigate ways of minimizing the dependence of
dB../dw on m.

To appreciate the magnitude of the problem, let us consider first a
nondispersive homogeneous dielectric slab with refractive index n close
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to unity. By comparing the length of rays at the critical angle (6,)
to the length of axial rays, we find that the pulse spreading is AT
= (L/e)[(cos 8,)~t — 1] =2 (L/e)(n — 1). This pulse spreading can be
written as a function of M, the number of modes that we want to trans-
mit (a characteristic of the source used) and of the slab width Y: AT
= 400 M?*(\/Y)? ns/km. For example, if we want to transmit 20 modes
and ¥ = 70 \, pulse spreading is 33 ns/km, a value that seriously limits
the transmission capacity for long-distance applications. The guide
width ¥ cannot be increased very much because the bending losses
would rapidly increase and because it is difficult to fabricate clad fibers
with very small differences in refractive index.

The difficulty is solved in principle if the permittivity e of the
medium varies as the square of the transverse coordinate y: e(y)
= 1 — 32 In a square-law medium, the optical length of the rays is
almost independent of their amplitude. If the permittivity has the
form e(y) = (coshy)* 1 — y* + 3y* + - -+, rays have in fact all
exactly the same optical length.!3—" Because most glasses have negligible
dispersion, such media exhibit very small pulse spreading.” Multimode
square-law fibers are certainly attractive. However, it may prove
difficult to obtain with sufficient accuracy the desired variation of
permittivity. Furthermore, the losses (impurities and scattering) are
usually higher for heterogeneous material than for homogeneous mate-
rial such as fused quartz. It is therefore interesting to investigate
whether a dimensional change can replace the continuous change in
the refractive index considered above.

A proposal to that effect was first made by Kawakami and Nishi-
zawa.! They have shown that optical beams can be confined trans-
versely in the plane of & slab if the slab thickness has a maximum along
some straight line (z-axis). This can be understood from a geometrical
optics point of view. The slab thickness can be considered a constant
over a small interval of the transverse coordinate y. Various modes can
propagate in this uniform slab. Let k denote the wave vector of one of
them, e.g., the H; mode. Because of isotropy, the magnitude & of k is
the same in all directions. Once the local properties of the waveguide
characterized by the wave number k(y) have been obtained, the prop-
agation of optical beams can be found, in the semiclassical approxima-
tion. We need deal only with k(y). For instance, if k*(y) is a quadratic
function of y, e.g., k2(y) = ks — Q2 the rays are sinusoids and they
have almost all the same optical length. Diffraction effects in the

* The properties of graded-index fibers that depart somewhat from a quadratic
law have also been investigated (Refs. 8 to 10).
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yz plane can be taken into account, to some extent, as the Hamil-
tonian theory of beam modes shows! For the quadratic variation
considered above, for example, the modes of propagation are Hermite-
gauss,'! regardless of the physical origin of the variation of k with
y (that is, whether the variation of & with y results from a genuine
variation in refractive index or from a change in slab thickness). Be-
cause we are interested in highly multimoded fibers, we consider only
the geometrical optics field. In that approximation, a mode is repre-
sented by a manifold of rays y(z + ¢), 0 < { < Z, where Z denotes the
ray period. The main result of this representation is that the axial
propagation constant (k.) of the guide is the value assumed by k at
the turning point y = & of the trajectory. Therefore, we need only
solve a ray equation.

The preceding discussion is applicable to the propagation of waves
at one angular frequency, w.. To obtain information concerning the
propagation of optical pulses, we need to know, not only k(y), but also
the variation of the local group velocity w with y. If the ratio (w./k)
- (8k/dw) of the local phase velocity (v = w,/k) and group velocity
(v = dw/dk) happens to be independent of the y coordinate, the time
of flight of a pulse along a ray trajectory is proportional to the optical
length of that ray. In that case (but only in that case), equal optical
lengths imply equal times of flight. The above condition (v/u inde-
pendent of ) is rather well satisfied for most materials with low dis-
persion, such as fused quartz, whose refractive index is changed slightly
by such processes as ion implantation. (For normal quartz n = 1.4564,
dn/dn = —0.27 X 10~% at A = 0.6563 pm.) In cases where there is a
physical change in the refractive index, it is sufficient to consider the
optical lengths of rays with different amplitudes to obtain with good
approximation the value of the pulse spreading. For a homogeneous
dielectrie slab, however, the ratio of the local phase to group velocities
is strongly dependent on the slab thickness (2d), and therefore on ¥,
when either 24 > \" or when 2d <« ). (The latter approximation is
made in Ref. 1; pulse spreading for tapered slabs is not discussed in
Ref. 1). We will show that small pulse spreading is obtained only for a
precise value of the slab thickness on axis. For simplicity, we have con-
sidered only quadratic and linear dependences of k% on . The optimum
profile may be different, however. In Section II we give the essential
formulas for the ray trajectories and times of flight in structures with

*We are indebted to E. A. J. Marcatili for pointing out that pulse spreading in
thick, quadratically tapered slabs is almost as large as in clad slabs. This ohservation,
at first surprising, stimulated our interest in the problem.
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known local phase and group veloeities. In Section III we consider in
detail the case of tapered slabs and given design values for low pulse
spreading. General results are given in Appendix A, and analytic
solutions for square-law and linear-law tapers are given in Appendix B.

Il. GENERAL RESULTS

The local value k& of the wave number of a slab mode is given in
Section II1. In the present section we assume that the local wave num-
ber k = ww and the inverse 0k/dw of the local group velocity v are
known functions of y at the operating angular frequency (w,). We give
the general form of the ray equations and the time of flight of a pulse
in a mode m, in the geometrical optics (J.W.K.B.) approximation.
The derivations are given in Appendix A.

In a medium that is isotropie, time-invariant, and independent of
the axial coordinate (z), that is, in a uniform fiber, the ray equations
i(2) are most convenient in the form

o=k (w,y) — k3, (1a)
dy/dz = —ak./dky = ky/k., (1b)
dk,/dz = 0k./dy = (ak¥/ oy)/k., (1c)
di/dz = ok./dw = (kY dw)/k-. (1d)

Because of the ¢ and z invariance of the medium, « and k. are constant
along any given ray (constants of motion). The 2 coordinate is ignored.
The first equation, (la), says that, because of local isotropy, &% + ki
is equal to &% In (1b) to (1d), k. is considered a function of k,, w, and
y. Equations 1(b) and (lc) are the ray equations. They give the in-
crements in ray position (dy) and momentum® (dk,) for an increment
dz of z. As indicated before, k. characterizes a ray trajectory, that is,
it is different from one ray to another, but it remains the same along
any given ray. We can eliminate &, from (1b) and (1c¢) by differentia-
tion. We obtain

dy/de? = §(ak*/ ay)/ k. (2)
We first select, as an initial condition, the angle 8, that the ray makes
with the z axis at the origin of the coordinate system (y = z = 0). We
then evaluate the constant of motion k. from

k; = k(0) cos @,. (3)

*The ray momentum is the transverse component of the wave vector. Ray
momenta and photon momenta (k) are essentially equivalent concepts.
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The ray trajectory y(z) is obtained step by step from (la) and (1b),
Yirr = Yo + [R(y) /K — 1]%4e, (4)

Az being the increment in z, and y, = 0. Note that, because of sym-
metry, it is sufficient to evaluate y(z) from y = 0 to the turning point
y = & with & given by k(&) = k..

To any given value of 8, (or k.) we can associate a mode number m.
The mode number is the area enclosed in phase space (k,, y) by a ray
trajectory, divided by 27 minus § (see Appendix A). Thus, if the
integration is stopped at the turning point y = £ (one-fourth of the
ray trajectory), we have

m = (2/x) L k,dy — (3)

L=

Strictly speaking, only those values 6, of 8, should be considered that
make 1 an integer in (5). However, because we are interested in modes
of high order, m can be considered a continuous parameter. An approxi-
mate value for m is =6,£/\, where \ denotes the wavelength on axis
[k(0) = 2x/7].

The time of flight T' of a pulse is, for a unit length, the inverse 1/v,
of the axial group velocity. We show in Appendix A that 7 is obtained
most easily by integrating along a ray ds/uw, where ds = (k/k,)dy
= (k/k.)dz denotes the elementary ray arc length, and 1/u = ak/dw
the inverse of the local group velocity. Thus,

T = 7~ jf ds/u = (2/2) [ T (0 de) (Kt — kD)~idy. (6)
0

Near the turning point (k = k.), the integrand in (6) is singular. It is
therefore preferable from a computational point of view to set ds
= (k/k.)dz and integrate over z rather than over y. We have [also
directly from (1d)]

Z/4
T = (2/2&::)]0 (0k?/ dw)dz. 7)

The purpose of this paper is to find ways to minimize the variation
AT of T for 0 < m < M, where m is given in (5) and M is the number
of modes that we want to transmit. It is interesting to compare this
variation to the variation AT, for a clad fiber having the same width
Y = 2f and the same number of modes J/. The latter is, as we have
seen in the introduetion,

AT. = (1/32)M2(\/&)%. (8)
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Thus, we want to maximize a quality factor @ defined as
Q = AT /AT = (1/32)M*(\/£)*/cAT. (9)

Note that, since AT and AT, are times of flight for unit lengths, they
have the dimensions of inverses of velocities. For given k(y) and
(ak/dw) (y), integration of (4), (5), and (7) gives Q(8,) in (9). As f,1is
increased, @ increases and reaches a maximum Q. which charae-
terizes the pulse spreading properties of an optical waveguide for a
given profile. The best profile is the one that maximizes @y .x, provided
other specifications (number of modes, channel width, --+) are met.

Ill. TAPERED DIELECTRIC SLABS

Let us now consider the tapered dielectric slab shown in Fig. 1h. We
consider only the H; mode of the slab. A similar discussion would be
applicable to the £; mode (and to higher-order modes if the slab is
thick enough to support them). Of course, a profile that is optimum for
the H ) mode need not be optimum for the £, mode, for example, unless
e = n?is very close to unityv. Let us first give expressions applicable to
slabs with constant thicknesses. We assume that the medium is the
same on both sides of the slab. (For dissymmetrical media, the formu-
las in Ref. 13 would be helpful.)

The dispersion equation k(w) for H; modes in a slab with relative
permittivity e and thickness 2d is, as is well known,

3

(kd)? — (‘-Ed) = ¢ tan® ¢, (10a)

Il

6= ¢ ( 2 d)e ~ (k). (10b)

From (10) we obtain at w/c = 2= (that is, A\ = 1 um, using the pm
as the unit of length), by straightforward substitutions and differ-
entiations,

d = (1/27)(e — 1)~p/cos ¢, (11a)
k= (20)°[1 + (e — 1) sin® ¢], (11b)

_ c Ok _ 2(ep tan ¢ + esin® ¢ + cos® ?)
D”Qaw N (ptan g + 1) (g

Thus, the quantities k* and $dk*/dw that enter in our previous expres-
sions are explicit functions of the parameter ¢, related to d by (11a).
The parameter ¢ varies from 7/2 for d = = to 0 for d = 0. The varia-
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e = e/ eash? (Y1)

RAY

Fig. 1—Planar fibers. (a) Fiber with constant thickness and variation of the
permittivity of the form 1/cosh? (y). (b) Tapered dielectric slab. The field is shown
for the H, slab mode. (¢) Coupling between the various slab modes (Hyy Hey oo vy
B, Es, ---) cannot be neglected when the thickness 2d(y) varies abruptly. This
coupling can climinate the higher-order modes (Ha, Es, ---) for suitable dimensions
(see Rei. 12).

tion of

v_ 2w c 0k _ eh tan ¢ -+ esin® ¢ + cos® $ (12)
2\ )23 [1+ (e—1)sinf¢l(otane + 1)

is plotted in Fig. 2 as a function of ¢ for various values of e. For quad-
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ratic k*(y), the optimum value ¢ on axis if close to the maximum of
the curves, shown by a dotted line, because, near this maximum, times
of flight are proportional to optical lengths (see Section II). Thus, we
have for that case a rule for the selection of the slab thickness on axis,
2d, = 2d(0). The optimum value of d, may be slightly different, how-
ever, than the one given by the maximum of the curves in Iig. 2, be-
cause we want to minimize the variations of 7 over a finite range of m.

Instead of specifying the slab profile d(y) or the square of the wave
number law k2(y), we find it convenient, for the ease of computa-
tions, to specify ¢(y). If ¢ is quadratic in y, both &*(y) and d(y) are
quadratic in y to first order. Thus, we set

¢ = ¢, — Ky, (13)

where K denotes a constant, in (11), and substitute in the ray equa-
tions, (1b) and (le), eq. (3) for m and eq. (7) for 7.

The variation of the time of flight as a function of the angle 6, that
the ray makes with the z axis at the origin is shown in Fig. 3 for ¢, = 1.5
to 0.2 and n = 1.45, A = 1 um. Large pulse spreading is observed

0.01

Viu-1

0.001

0.0001

0.00001 1 1 1 ! | | |
0 0.2 0.4 06 0.8 1o 1.2 1.4 16
@

Fig. 2—Variation of the ratio of phase to group velocity in a dielectric slab for
diffierent relative permittivities, as a function of the characteristic angle ¢. The
optimum points of operation for low pulse spreading in square-law tapered slabs are
shown by a dashed line (A = 1 um).

PULSE SPREADING IN OPTICAL FIBERS 1607



0.05
¢p=1.5 14
L n=145 1.2
1.2
002
y 1.1
= 1
= 0.02 —
=
;u. 0.8
S =
£ 0.0t 08
- _-:'”-’-—
= =
o — :
3 0 = 0.7
-0.01 — 0.8
0.5
-0.02 -
-0.03 ; 0.2 03 0.4
0
0.1 o2 A

by

Fig. 3—Ratio of va i
: cuum to axial group velociti i i
angle (@ 0 ] locities (c/v;) as a funct '
"ﬁg’laii{o#oafltﬂle Ir::lmn.gm, for a tapered daerecmc slab with n = 1 4:":-“3:3113‘}{ tl:ie 4=
i XAl he ¢ }amgteristac angle g o = ¢, — 4 X 1075, for various \alqua I}auc
- 2 Faz o i 3 ; : S .
Sroup ol 662ei:';ee ntc: ¢/vg by T = (104/3)¢/v; ns/km. The chara.cteris‘:?t; :nq,fé
el | en to give a small variation of ¢/v, overal o
s 0 a large range of values

E\)‘he.n the slab is very thick on axis (¢, = 1.5) or very thin (¢, = 0.2)
folitir};?::;;alu% are between E-)‘G a_nd 0.7. Detailed results willobe gix.r-c-zn.
s en = 1.01 (re‘fractwe‘md‘ex of the slah is 1 percent higher
_ 1at of the surrounding medium), which seems of greater practical
importance. “
For n = 1.01, A = Ll um, and ¢ = ¢, — 107%2, w in Fi
]Eillljat the tapered slab can be 50 times superior tg }th:: qusf\,';.;;n{%].aj
& er h('facvztor Q). T{J.e prpﬁle of this fiber is shown in Fig. 6 (curve a),
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i io}ze the tm ig. 6 (curve b). For both guadratic and linear
o , 2 d- at a trade-off has Eo be made between the quality
factor and the n.wde number 7. (Note that the results are meani -
ful only when M is large compared with unity.) .
In c_onc%usion_. tapered dielectric slabs car; exhibit very low pul
§pread1ng if properly dimensioned. If the slab material has a refralér' .
index 1 percent higher than that of the surrounding medium, th th'lf(e
ness should be of the order of 2.5 == 0.2 ym at a \\'aveleng£h oef 1 ;Cm-
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The waveguide width would be in that case of the order of 0.2 mm.
Pulse spreading does not exceed 0.05 ns/km for 15 modes. These opti-
cal waveguides are attractive because they can be stacked for multi-

channel operation (a possible arrangement is shown in Fig. 7) and
splicing would perhaps be easier than with conventional fibers (a good
fibers). Further

angular alignment, however, is required for planar
technological researches are needed to settle this point.
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APPENDIX A

Times of Flight in the J.W.K.B. Approximation
The purpose of this appendix is to derive the ray equations and the

time-of-flight equations from general principles. We start from the

Hamilton equations in space-time both for conceptual clarity and to

AT £

ajm
n=1.01 ngec fkm) | (um)

5020

2510 0.05-1+-50

0 L 1 | I o
0775 0.780 0.785 0.790
do IN RADIANS

Fie. 4—Variation with the characteristic angle on axis & (or slab thickness on

£ - ;
axis 2d,) of the quality factor O (defined as the ratio of pulse spreading for an equiva:
i T) for ¢ = 1.02 (n = 1.01) and

lent clad fiber AT to the actual pulse spreading &A1) _
¢ = ¢, — 1075, & denotes the maximum ray excursion, M the total number of
modes, and AT the pulse spreading. The ray period is 14 mm and 6,1 equal to 2.6°

for @, = 0.785 (N = 1 pm).
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Fig. 5>—Variation with the characteristic angle on axis ¢, (or slab thickness on
axis 2d,) of the quality factor Q@ for ¢ = 1.02 (n = 1.01) and & = @, — 5 X 1073 y].
The variations of £, A, and AT are also given. The ray period is 5.6 mm and 8, is
equal to 4° for ¢, )

]

facilitate generalizations to anisotropic or time varving media (which
are not discussed in detail in the main text, but are of potential
interest).

A general medium is described by a function of @, k, ¢, x

H(w, Xk, t,x) = 0. (14a)
The space-time trajectories (world lines) of particles or wave packets,
[i(o), x(o)]orx(t), are obtained by integrating the Hamilton equations
dt/de = —dH/dw,

dx/ds = 9H/ ok,

dw/de = aH/ai,
dk/de = — dH/dx,

(14b)

where ¢ denotes an arbitrary parameter.” These equations are in a suit-

“If we define X = {x, wt}, K = {k, fw/c}, the Hamilton equations (14b) are:
dX/de = aH/dK and dK/de = —3H/aX. The latter follows from the first (see
Ref, 11) because A = 0 and K = V8. The dynamical significance of the Hamilton
equations follows from the expression of the canonical stress-energy tensor ( Ref. 14)
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2u (pm)

0 | | 1 ! |
0 25 50 75 100 125 150

y i tumi

Fig, 6—Slab profiles for n = 1.01. (a) Quadratic case ¢ = 0.785 — 107%% (b)
Linear case ¢ = 1 — 5 X 107 y|.

able form for numerical integration. The initial conditions must, of
course, be consistent with (14a). Then (14a) remains satisfied at all
s because, from (14b), dH/de = 0.

For time-invariant media, the form

w = w(k, X) (15}

is more useful. The motion x(¢) of a wave packet is a solution of the
Hamilton equations
dx/dt = dw/dk,

(16)
dk/dt = — dw/ox.

If we are interested only in ray trajectories at some fixed w, we can
rewrite (13)
hik, x) =0, (17a)

T = Ka£/aK, where £ denotes the averaged Lagrangian density. 3€/9K is the
(conserved) wave action, and T is conserved in time-invariant homogeneous media.
The equality of group and energy velocities readily follows from this expression for
T. Note that these results are applicable to any linear wave (e.g., matter waves,
acoustical waves, or optical waves).
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{10 CHANNELS)

Fig. 7—Stacked tapered dielectric slabs. Adjacent slabs are separated by slabs
with inverted slope and high index to minimize crosstalk caused by scattering.

and obtain the ravs from

dx/de = dh/8k,

dk/de = — dh/ox, (170}

where ¢ is again an arbitrary parameter. Equation (17) is the reduction
of (14) to three dimensions. Note that the Fermat prineiple (in three
dimensions) is applicable to ravs x(e¢) at a constant frequency w. It is
unrelated to the time of flight of wave packets, except for nondispersive
media. It is important for our study that the time of flight of a pulse
be carefully distinguished from the transit time of the crest of a time-
harmonic wave (optical length). The latter is the integral of the ray
index along the ray path, evaluated at a fixed frequency .
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We need the Hamilton equations in one more form, in which the z
axis is singled out. For media that are invariant in the z direction, it is
convenient to solve (14a) for k.. Ignoring the = coordinate, we have

= k# - k!(m] kw .U) = 0: (18&)
and the ray equations are, from (14b),

dy/dz = — dk./ak,,
di/dz = 3k./dw, (18b)
dk,/dz = 8k./dy,

where w and k. are constants of motion. If the surface y, z is isotropie,
k enters only through its magnitude k. Thus,

k: = k*w, y) — ki, (19)
and (18) becomes
dy/dz = ky/k., {20a)
dky/dz = (k3 ay)/k., (20b)
dt/dz = L(8k*/ dw)/k.. (20¢)

These are the expressions used in the main text. Equations (20a) and
(20b) give the rate of change of the ray position and momentum as a
function of z. Equation (20¢) gives the time of flight of a pulse by direct
integration. We now show that this result can be obtained from the
J.W.K.B. approximation of the wave optics solution.

The scalar Helmholtz equation is obtained from the substitution

ky,— —1d/3y (21)

in (19). We obtain
[8/ 85" + 1w, ) om = Kintim, (22)
where m = 0, 1, 2, - - -, for trapped modes. Given k(w, ¥), we look for

solutions of (22) that are square-integrable and obtain the time of
flicht of a pulse in a mode m over a unit length by differentiating k.n
with respect to «w,

T = 1/v, = 0kin/dw. (23)

Instead of solving (22) for k. and differentiating with respect to o,
we may use the Hellmann-Feynman (H.F.) theorem.'* Let 3¢ be a
self-adjoint operator depending on a parameter w,

3 ()Ym = Enim. (24)
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Premultiplying both sides of (24) by ¥ we obtain
En = WndC(@)¥n)/ Fm¥m), (25)

where
]
@by = [ a* @by (26)
It is not difficult to show that E.. is stationary wit_h respect to a small
change in ... Thus, when we differentiate (25) with respect to w (or
«?), we can ignore the dependence of ¥m 0N @ (or «?). We have for ¢
a real

dEn _ (m(d50/de)¥m) (27
At (Yadm)

In our case, (22),
W (w) = &/dy* + K w, ¥)- (28)

Thus, by application of the H.F. theorem we obtain
(c/v)m = (ko/kem) (dkin/dKS) = (ko/Koem)
o =0
x [ (ke arvady /[ vty = ) @0 (29)

The J.W.K.B. method shows that, for large m, a mode can be repre-
sented by a manifold of rays satisfying the Bohr-Sommerfeld condition

fk,,dy = (m -+ 3)2r, (30)

where the integral on the lefthand side In (30) is the area enclosed in
phase space (ky, y) by a ray trajectory. Equation .(30) expresses the
uniqueness of the phase of the field. At the turning point, ky, = 0,
y = En, we have from (19)

k:m = k(w; Erﬂ) (31)
An alternative way of obtaining the time of flight of a pulse in a
mode m is to integrate ds/u from z = 0 to 1 along a ray of the mani-

fold. The arc length is denoted by ds = (k/k.)dz and u= = 8k/dw is
the inverse of the local group velocity. Thus,

(Y (EYam e (WY -
T=fo(53)(ki)dz*" YANE ;
This expression, (32), in which ( ) denotes an average taken along a

ray period, is the semiclassical analog of the Hellmann-Feynman t!‘xeo—
rem eqs. (27) and (29), and is used in the main text. It can be obtained
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alternatively by noting that the group velocity in a waveguide is the
ratio of the total energy flow to the energy stored per unit length.
(This is a special case of the-theorem derived in Ref. 16 for periodic
bi-anisotropic media. To obtain the result applicable to open wave-
guides, we only have to let the periods go to infinity.) The result, (32),
follows by integrating the energy density along a ray pencil bounded
by the rays y(z) and y(z + dz). Let us sketch the proof. If Pdz denotes
the energy flow in this ray pencil, the total energy flow in the wave-
guide is PZ. The energy density, on the other hand, is P/wsiné,
where 8 is the angle that the ray makes with the z axis. Thus, the energy
per unit length is obtained by integrating Pds/u along the ray, in
agreement with (32).

APPENDIX B
Square-Law and Linear-Law Media

In this appendix we work out the case of square-law and linear-law
media because they lend themselves to exact analytical expressions
that are useful for comparison with computed solutions. The case in
which the wave number & varies quadratically with y is also useful to
obtain first-order solutions. Let us consider this case first.

k2w, y) = ki(w) — @ (w)y? (33)
where the functions k,(») and Q(w) are arbitrary. The wave equation,
(22), is

(8% 9y® + k2 — Q%) = kW, (34)
where ¥ represents, for instance, the y component of the electric field

for H modes in a dielectric slab. This equation has the well-known
eigenvalues

o=k — (2m + e (35)
Thus,

T = 1/v, = dk./dow = [kk, — (m + HQIEE — (2m + 1)QT
= ko + (2/ko) (ko/ko — 2/Q) (m + 3) + (9%/k3)

X [@®ko/ko — /0T(m + $)* + -+, (36)
where upper dots denote differentiation with respect to w. The condi-
tion for the removal of the first-order terms in (36), k/k, = Q/Q, is the
same as the condition of stationarity of v/u = wk245(dk*/dw) given in

the main text. (Note that m is proportional to 8. Thus, first-order
terms in m correspond to §; terms.)
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Let us now show that this result can be derived from the ray equa-
tions. Equations (19) and (20) are

dy/dz = ky/k., (37a)
dk,/de = —Qy/k., (37b)
dy/dzt + (Uk)y = 0. (37¢)
The solution of these equations is straightforward. We obtain
y = (kyo/Q) sin [(Q/k.)z], (38a)
ky = kyocos [(/k.)z], (38h)
where kyo = 12 — k2, (38¢)

if we specify, for simplicity, that y(0) = 0, and use (33). The quantum
condition, (30), is therefore

ki, = (2m -+ 1)%. (39)
Thus, setting k,./Q = &, the axial wave number is given by
k= ke, &) = k2 — @8 = E2 — (2m + 1), (40a)
in exact agreement with (35) (the agreement needs to be exact only
for square-law media).

The ratio of the optical length of a ray period (period Z) to the cor-
responding length on axis is

Zz
T (koZ)—zﬁz Eds = (;ﬁoktz)—lfo k2dz

= (kki2) [ ® B — R, eint [(@/k)2])d2
=0 (1 — sin%6,)/cos 8, =1+ 6;/8 + ---, (40b)
where 6, denotes the angle between the ray and the z axis at the origin.
By comparison, we have for a clad slab
R.= 1l/cosb, =1+ 6/2+ -, (40¢)

Thus, for small 6,, B — 1 is much smaller than R, — 1, as Flisr_:ussed in
the introduction. The above results, (40b) gnd (40c), are significant ‘ml
the problem of pulse spreading in graded-mde}' fibers if the rpz;te?z}
has low dispersion, but they are not re]e_vam. to tapered dielectric
slabs. They are given here only for comparison.
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Let us now evaluate the group velocity by integrating ds/u along a
ray of the manifold, following (32). We have

Z 2 2

ot = Gy [ 02 ) as (41)
where Z = 27k./Q denotes the spatial period, and y(z) is given in
(38a). The integration is straightforward, Using (39), a result identical
to (36) is obtained. Note that the above results are exact; the paraxial
approximation was not made. We have shown in Appendix A that it
Is legitimate to evaluate pulse spreading by integrating the inverse of
the local group velocity along rays representing the modes of propaga-
tion, in the limit of large mode numbers, The agreement is now found
to be exact for square-law media.

For a linear-law medium with

R w, y) = ki(w) — 2a(w)|y], (42)
we shall only give the results. The rays are, from (20),
$n 0<z<2Z/2
= z L= g= =2
y(z) = tan b,z F (a/2k% cos?6,)z 7/2 <2< 2, (43)
with a period
Z = 4k3 sin 8, cos 6,/a. (44)

The ratio of the optical length of a ray to the length on axis is
[kcls/fkadz = (1 — %sin4,)/cos 8, = 1 — 6/6 + .. (45)

The situation is opposite to that of a clad fiber: The optical length
decreases as §, increases. Therefore, we may in that case have a small
increase of u/u when the slab thickness is reduced, that is, work on the
right side of the dotted line in Fig. 2. This leads to a thicker slab than
in the case of square-law profiles. These theoretical results are con-
firmed by the curves in Figs. 5 and 6. We note that the optimum ¢,
Is about 1, the maximum of the v/w curve being at only 0.8. The time
of flight is, using (32),

T = 1/v, = (cos 8,)"'dk,/dw — (23/6) (k./a)(sin? 8,/cos 6,) (da/dw).

Thus, T is independent of 8, for small 8, (no terms in 82) if k,(w) and
a(w) in (42) are related by

(dks/dew)/ ko = (23/3) (da/dw)/a. (46)
It can be shown that this condition corresponds to an increase of v/u

with |y|, in agreement with the previous discussion.
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