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Abstract: The small-signal modulation and noise
properties (electrical voltage, optical power and
phase) of laser diodes depend on ten real param-
eters relating to the semiconductor material
employed. Among these, the phase-amplitude
coupling factor « is of particular importance.
These parameters are evaluated for GaAs at
0.87 ym, GalnAsP at 1.55um and InAsSb at
3.87 ym at room temperature. Revised expressions
for the optical gain are used. The light-hole contri-
bution, the plasma effect and band-gap shrinkage
are taken into account. The latter leads to a sig-
nificant reduction of «, particularly below the
peak-gain frequency. The x-factors for the three
materials listed above are found to be, respec-
tively, 2.9, 3.85 and 8.3 for conventional diodes.

1 Introduction

Stringent requirements concerning modulation character-
istics and fluctuations are imposed upon laser diodes
used in sensor and optical communication systems. The
noise properties of laser diodes can be obtained in full
generality from Nyquist's expression of fluctuations
associated with resistors and the energy-conservation law
[1]. This Nyquist theory gives expressions for the spectral
density of fluctuating quantities that are in exact agree-
ment with the results of quantum optics [2], even in the
case of electrical feedback and nonclassical states of light
[3]. For frequency-independent losses, one may equiva-
lently postulate independent shot-noise fluctuations of
the light fluxes. They are in approximate agreement with
standard ate equations [4-6] for simple laser models but
significant discrepancies may occur when spatial inhomo-
geneities are accounted for [7].

Besides geometrical parameters (thickness, width and
length of the active volume) and the injected current and
its fluctuations, the modulation and noise properties of
laser diodes depend on ten parameters relating to the
properties of the semiconductor employed in the active
region. They are defined below.

Let U denote the voltage across the diode, the voltage
drop across the confining layers and contacts being con-
sidered separately. U 1s equal to the energy spacing
between the conduction and valence band quasi-Fermi
levels divided by e (the absolute value of the electron
charge), and is a function of the carrier density n.
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We define the dimensionless differential parameter
u = (n/U) dU/dn. The parameter u, which expresses the
change of the electrical voltage U for some small change
of carrier density n, is important for the optoelectrical
characterisation of the diode particularly when electrical
feedback from an optical detector is employed to reduce
power or phase fluctuations.

Let S(n) denote the total spontaneous recombination
rate. The parameter s = (n/S) dS/dn expresses the depen-
dence of S on the carrier density n. At T = OK the radi-
ative spontaneous recombination rate is proportional to
n and thus s = 1. At elevated temperatures, the electron-
hole collision theory is an acceptable approximation and
s = 2. The s-factor may reach the value of 3 when Auger
effects are dominant.

Let us further define, as in Reference 8, the complex
conductivity a(v, n) = g'(v, n) + ig”(v, n). Note that time-
variations are denoted with an exp (—i2nvt) notation at
optical frequencies and an exp (j2n/t) notation at base-
band frequencies [1]. The gain (or loss) is simply related
to ¢’, whereas the refractive index n, is simply related to
¢”. The refractive index n, determines, in conjunction
with the refractive index of the confining layers, the con-
finement factor I' (and thus the modal gain), the facet
reflectivity for TE or TM polarisations, and the far-field
radiation pattern. The differential gain do’/@n important-
ly influences the laser diode relaxation frequency, and we
define g = (n/o’) do’/dn. The dependence of ¢’ on the
optical frequency v is very small for semiconductors and
is unimportant when only one oscillating mode is con-
sidered. We therefore do not evaluate the parameter
do’'/dv. However, it is important to evaluate the group
velocity v, which is related to d¢”/dv. The group index
n, = c/v, determines in conjunction with the confining-
layer group index the intermode frequency spacing
(precisely, one must average the product n,n,, with T as
a weighting factor). Strictly speaking, these indices are
complex numbers, but we find it sufficiently accurate to
consider only the real parts. The most important factor is
probably the phase-amplitude coupling factor

= —(d¢”"/dn)/(da’/én). This factor, introduced in laser-
linewidth theory by Lax [9] and Haug [10] is of major
practical importance for laser diodes, as Henry first
showed [11]. Finally, one must split ¢' into g, — o,
where ¢ expresses stimulated absorption and o, stimu-
lated emission. The factor n, = —¢’/¢’ (sometimes called
‘spontaneous emission factor’ and denoted n,,) is unity
for full inversion of the carrier population.

To summarise, we shall evaluate five steady-state
parameters: U(ny), S(ng), o'(ve, ny), vy, ne) and nyv,,
no), and five differential parameters, namely u(ng), s(ng),
9(vo, M), ®Vo, no), ny(vo, ny) at the steady-state frequency
vo and carrier density n,.
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In the present paper we concentrate on the theoretical
evatuation of bulk semiconductor parameters. To our
knowledge, this has not been done before in a unified
manner, The evaluation is based on measured values of a
number of primary parameters such as the effective mass
of electrons in the conduction band and on Kane's k — p
method [12] using a strict electron-wavenumber (k) con-
servation law. The distribution in energy of the electrons
and holes is given by Fermi-Dirac’s law and the imagin-
ary part ¢” of the complex conductivity is obtained from
the real part ¢' through Kramers-Kronig's (or Hilbert’s)
relations. The high-frequency behaviour of ¢' is modelled
by Dirac’s d-function, whose position and weight are
fitted to measured values of refractive indices below the
band-gap. Finally, the spontaneous radiative recombi-
nation rate is obtained from the radiation of the Nyquist
current sources into an homogeneous space [13]. First-
principle derivations are not given, but the essential for-
mulas are listed in Appendix 8 with concise explanations.

For GaAs (0.87 um), nonradiative recombinations
remain small and are neglected. For InAsSb (3.87 um) the
spin-orbit splitting energy A is comparable to the band-
gap energy E,,, and this causes strong nonradiative (nr)
recombinations due to the Auger effect. We have used the
expression S,,(n, T) = C(T)n?, where C(T) is crudely esti-
mated. In the Figures, the three materials considered;
GaAs, GalnAsP and InAsSb are labelled by 1, 2 and 3,
respectively.

Let us now clarify the approximations made. The
theory of optical gain is the simplest when there is only
one kind of hole with a mass equal to the effective mass
of the electron in the conduction band as is the case for
lead salts such as PbSe. (The bands are anisotropic in
these materials, however, and their properties are not dis-
cussed in detail here). In that case, the quasi-Fermi levels
are symmetrically positioned with respect to the middle
of the band gap. At T = 0K, transparency occurs in prin-
ciple for arbitrarily small carrier densities and injected
currents. The a-factor at maximum-gain is then as low as
1.7 according to our calculations, plasma and band-gap
shrinkage effects being neglected here.

At T = 0K, Kane's four-band theory [12] predicts
that the minimum value of the conductivity (maximum
gain) is ¢’ = —4 107 n'/? in S.I. units when A <€ E, and
m, ~m3®» m.~m, where m is the free-space electron
mass, and m_, m,, m, are, respectively, the conduction
“and, heavy and light-hole masses [14, 7]. This expres-
sion is applicable to any direct band-gap III-V com-
pound and is independent of the refractive index. It has
been pointed out recently [15] that alternative expres-
sions given in the literature for ¢’ (or for the gain) are too
low by a factor of two, notwithstanding other correction
factors discussed below. Note that an upward revision of
the expression for the optical gain implies not only
reduced threshold currents but also reduced «-factors.
Indeed, the enhancement of the a-factor by the plasma
effect is reduced when the optical gain is increased.

The light-hole contribution to the gain cannot be
neglected even in the limit in which the heavy-hole mass
goes to infinity [16]. At low temperatures (T = 2K) the
o'(v) curve shown in Fig. 1 (shifted to the right for the
sake of comparison with room-temperature curves) dis-
tinctly exhibits the light-hole and heavy-hole contribu-
tions to the gain. At room temperature, the ratio of
light-hole to heavy-hole contributions is almost indepen-
dent of frequency and is equal to one-half when the
approximation m, > m, =~ m, holds.

Kane’s theory, when restricted to only four bands, is
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not sufficiently accurate for wide band-gap materials such
as GaAs. The conduction-band electron mass that deter-
mines the transition matrix differs somewhat from the
measured mass because of higher-lying conduction bands
[15, 17]. This forces us to multiply the expression for the

10 * theory

experiment
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1.4 145 1.5
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Fig. 1 Variation of the real part &' of the conductivity as a function of
frequency v.

The upper part of the parabola with horizontal axis follows from Kane's theory
for the unpumped material. The curve for T = 2K is calculated for a carrier
density n = 1.5 x 10'” cm ™, and shifted to the right for the sake of comparison.
This curve exhibits light-hole and heavy-hole contributions. The curve labelled
T = 300K includes all the contributions except those originating from excitons
and is calculated for n = 2 x 10'* cm™*. The star is calculated with the excitonic
contribution taken into account. The upper curve is experimental for very pure
GaAs at 300K

gain by a factor which is estimated at 1.2 for GaAs [15]
but can be omitted for the narrower band-gap materials
2 and 3.

The optical loss of a very pure GaAs sample measured
as a function of frequency at room temperature [18, 19]
is compared in Fig. 1 with the prediction of Kane's
theory discussed above, which corresponds to the para-
bola with horizontal axis. In pure materials excitonic
absorption is significant even when kT (26 meV) is larger
than the excitonic binding energy (4.6 meV for heavy-
hole excitons in GaAs). The band-gap-edge optical loss is
nonzero when excitons are taken into account [18] and
is simply related to the parabolic loss-law discussed pre-
viously. The theoretical result shown by a star in Fig. 1 at
the band edge is in acceptable agreement with the mea-
sured value. This gives us confidence that Kane's theory,
when properly interpreted, is accurate. For most semi-
conductor samples, excitons are in fact screened by
residual impurities even if the samples are nominally
undoped as we assume here, or by injected carriers if n
exceeds approximately 10'® cm ™3, For that reason exci-
tons are not considered further in this paper. When the
plasma effect is omitted calculated values of « at a peak
gain of 200 cm ™' are 2.45 instead of 2.93 for GaAs, 2.7
instead of 3.85 for GalnAsP and 4.0 instead of 8.33 for
InAsSb.

Band-gap shrinkage (renormalisation of the band-gap
energy) is accounted for. This effect is mainly due to
Coulomb interaction and is inversely proportional to the
average electron spacing. The ¢'(v) curve is assumed to
shift rigidly frequency-wise by the amount év = —AE /h.
We have AE, = fn'”, with # a constant. This third-
power law established at T = OK is valid at room tem-
perature for the rather high carrier densities that we are
considering [20]. The coefficient £ is equal to 3.2 1073, if
AE, is expressed in eV and n in cm™* [See eqn. 20].
Band-gap shrinkage explains why most laser diodes oscil-
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late below the band-gap frequency. An alternative expla-
nation rests on band-tail states. Band-gap shrinkage
reduces the a-values, particularly at frequencies below the
peak-gain frequency. : ‘

In summary, the calculations presented in this paper
take into consideration accurate expressions for the gain,
light-hole contributions, plasma effects and band-gap
shrinkage. These effects are treated consistentl},f and not
simply added. We do not take into account excitons, non
x-conservation, band-tail states, intraband relaxation or
spectral hole burning [21, 22]. The _conduction—band
nonparabolicity is not explicitly taken into account, but
we indicate (interrupted lines in the Figures) when the
parabolic approximation may be inaccurate. X and L
conduction band valleys need not be considered for the
materials that we study. Free-carrier and intravalence
band (IVB) absorptions are not taken into account. The
role of IVB absorption on the refractive index is usually
considered negligible [16].

2 Primary semiconductor parameters

Since it is impractical to deduce all semiconductor
parameters from the chemical composition, some of them
have to be measured. The primary parameters that we
shall need are listed in Table 1.

Table 1: (Primary) unpumped semiconductor parameters at
T = 300K

Material 1 2 3

& (eV) 1.423 0.801 0.319
A (eV) 0.341 0.316 0.347
m_/m 0.0632 0.0450 0.023
m/m 0.5 0438 0410
m,/m 0.088 0.0575 0.025
m*/m 0.05 0.0450 0.023
n, 0.9 353 3.51 3.50
n, 08 3.46 3.47 348
€, 12.85

C (cm®/s) negligible 1077 1g=+7
Derived masses

m,m, eqn. 17 0524 0.4582 0.414

4, /m, ean. 23 0.0561 0.0408 0.0218
u,/m, eqn. 23 0.0368 0.0252 0.012
m,/m, eqn. 26 0.0541 0.0397 0.0215

1= GaAs, 2 = In; 55:G30.418A50.808P0.102¢ 3 = INAS, 55Sbo.0s0 Ego
is the band-gap energy, m is the vacuum electron mass and m_ ‘h.e
band-edge (direct I-valley) econduction-band electron mass, m: is
the effective electron mass in the conduction band that should be
used (instead of m_) in a four-band approxirpatipn,_h = heavy hole,
[ = light hole and n, 0.9 and n, 0.8 are refractive |_nd|ces me!asured_ at
v=10.9 and 0.8v,,, respectively, (hvg,=Ez,) €, I8 the static relative
permittivity and C the estimated Auger coefficient. The data for
materials 1, 2, 3 are, respectively, from References 18 and 19, 5, and

27,

The band-gap energies E,, and A are most conveniept-
ly measured from electroreflection techniques. Effective
masses have been determined, for example, from Faraday
rotation, and the refractive indices below the band-gap
frequency from sample optical reflectivities. The electron
and hole mobilities and electronic affinities are not

needed here.

3 Definition of secondary parameters

The electrical voltage U applied to the intrinsic diode
(that is, not considering the voltage drop in the conﬁ_ne-
ment layers and contacts) is equal to the energy spacing
between quasi-Fermi levels in the conduction and valence
bands divided by the absolute value e of the electron
charge. Bernard and Durrafourg have shown that optical
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transparency is achieved at frequency v if E, <hv<eU.
We assume that the semiconductor is undoped and
neutral: p = n. U is a monotonically increasing function
of n, see eqn. 19. We define the dimensionless differential
parameter

n dU

— — 1
U dn &

il

u

The complex conductivity o(v, n) = ¢" + i¢” is the ratio of
total current density to impressed electrical field. It
depends on the optical frequency v and carrier density n.
The power loss 2, and power gain g, are related to o’ by

2= —g, = \/(‘—é) o @)

if the loss or gain are small. Here, u = p, is the free-space
permeability and &= gyn?, where &, denotes the free-
space permittivity and n, the refractive index. For
example, a gain value g, = 200 cm~' corresponds to
¢ = —190 S/m if n, = 3.6 (AsGa). An exact form for g, is
given in eqn. 7 below. The expression of ¢’ follows from
Kane's theory and the measurement of primary param-
eters (see eqn. 21). The dimensionless differential gain g is
defined as

= (3)
n

<

1]

Q\[;
=%

g

g is equal to 0 at T = 0K but usually exceeds unity and
may reach large values at small carrier densities.

The real part ¢’ of the conductivity ¢ may be split into
a term o), expressing stimulated emission minus a term a,
expressing stimulated absorption. The population inver-
sion factor

a

m o~

’

n=—-= dgd=qg,-0, (4)
a

is readily evaluated once the quasi-Fermi levels have
been located. )

The spontaneous emission rate S(n) is the sum of the
radiative spontaneous emission rate S,(n) that can be
evaluated from the radiation of Nyquist sources, anc_l the
nonradiative spontaneous emission rate S,,(n). The differ-

ential parameter s is defined as

pt 5)
Sdn
and is a value between 1 and 3.

The imaginary part ¢” of ¢ is obtained from t_hc real
part ¢’ through a Kramers-Kronig’s transformation, for
some n-value (see eqn. 26). The refractive index n,(v, n) 1s
then obtained from

J@?+d?)—a"

= =

4nveg

o

a

(6)

n

2mveg
The power gain g,(v, n) is given exactly by
g2 = dnve[/(6? + 0"?) + 0”] 7)

The group refractive index is defined from the group
velocity v, as

_ 9] ®)

¢
g
v, av

L

n
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Finzlly, the phase-amplitude coupling factor « defined at
some frequency v by

éa”/én
do’/on

is usually positive and valued between 1 and 10. « is
sometimes referred to as the ‘antiguiding parameter’.

%

x

U]

4 Pumped semiconductor paramaters

The optical gain is expressed by the real part ¢’ of the
conductivity represented in Fig. 2 as a function of the

0‘. Prii
E
2
w CIE
£
©
- I 1 1 1 1 1 1 1 1 ]
2l'.l' 1 4 5

2 3

n, 108 em™
Fig. 2 Variation of the real part ¢’ of the conductivity at peak gain as
a function of carrier density

The labels 1, 2, 3 correspond to the three materials at 0.87, 1.55 and 3.87 um,
respectively. Negative o’-values correspond to positive gains.

carrier density n. The subscript ‘m’ indicates that this
conductivity is evaluated at the peak-gain frequency. The
value corresponding to an optical power gain g, =
200 cm ™" is shown by a horizontal line (the three
materials considered have almost the same refractive
index). The corresponding n-values are 1.65, 1.24, and
0.75 10*® cm ™2 for materials 1, 2, 3, respectively. The
curves are interrupted when the parabolic-band approx-
imation is questionable.

Fig. 3a gives the electrical voltage across the intrinsic
diode as a function of the carrier density n. The semicon-
ductor transparency occurs when U — U, >0, where
U, = E Je. Fig. 3b gives the peak-gain frequency v, =
- E,/h as a function of the carrier density n. For the three
materials v,, <v,, in the usual range of n-values, and
therefore Fabry-Perot laser diodes would oscillate below
the band-gap frequency (about 30 meV below E,, for
GaAs).

The refractive index n, is shown in Fig. 4 as a function
of frequency for unpumped GaAs (label ‘0’) and various
carrier densities expressed in units of 10'® cm™>. These
curves show that the refractive index n,,, at the peak-gain
frequency increases slightly with n (note that the fre-
quency varies) and is of the order of 3.63. The group
index n, at peak-gain frequency is about 4.85.

From a practical stand-point, the most important
parameter in laser-diode theory is the spontaneous
recombination rate S(n), which determines the threshold
current I,, = e¥'S, where ¥~ denotes the active volume,
The radiative part of S is essentially the integral over fre-
quency of the stimulated emission conductivity ¢, =
—n,0’, as shown in eqn. 25, and is represented by dotted
lines in Fig. 5. The nonradiative part is due essentially to
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the Auger effect and is of the form Cn®. Estimated values
of the C coefficients have been given in Table 1. Because
of the high value of C for InAsSb, room-temperature
operation of laser diodes using this material would
require careful optimisation [28]. Operation at
T = 160K, and low threshold currents at 70K have been
reported [29].

0.2
P
= -
-~
3 - o
// 2 .~
0.1
/ 1
- /
s+ 7
T
L/
0 ,/
-0.1 I ! 1 1 | I L E |
0 1 & 5
n, 10'8cm_33
a
0.1
3
— // ’-_‘_,.-'
-_—
/ 2
3 // 1
3.0 g
=
w -
-0.1 1 ] ] ! 1 L ! L 1 J
0 1 2 3 4 5

n, 108cm™
b
Fig. 3  Variation of the voltage and peak-gain frequency as a function
of carrier density for the three materials
a Variation of voltage U across the intrinsic diode (energy spacing between quasi-

Fermi's levels divided by e)
b Variation of the peak-gain lrequency v, = E_/h

3.7 5

n/10'8=2

<365

36 1 1 1 1 1 1 &
144 1.45

1
140 1.41 142 1.43
hv, eV

Fig. 4  Variation of the refractive index (left) and group index (right) of
GaAs as a function of frequency v for different carrier densities n
expressed in units of 10*® em™*

Arrows correspond lo peak-gain [requencies. The label '0" corresponds to the
unpumped material
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The dimensionless differential gain g,, at peak-gain fre-
quency is shown in Fig. 6 as a function of carrier density.

The reciprocal of the u-factor defined in eqn. 1 is
shown in Fig. 7 as a function of the carrier density n. It
agrees well with Reference 30.

3
3
| |

Jype MAIpm

»
0 0%

Fig. 5 Variation of the recombination rates S or threshold current
densities (J, = eS) as a function of carrier density for the three materials

Dotted lines correspond to radiative recombination rates

0 1 2 3 4 5
n, 108 cm™?

Fig. 6 Variation of the dimensionless differential gain g,, at peak gain
as a function of carrier density for the three materials

20

(R

L Bl L 5

u

101
2
— e 3
9 1 3 1 1 L ! 1 1 |
0 1 2 3 4 5
n, 10'® em?
Fig. 7  Variation of the dimensionless differential voltage u as a fune-

tion of carrier density for the three materials

The differential spontaneous emission parameter s
follows from Fig. S and is shown in Fig. 8 as a function of
the carrier density n.

Self-focusing in the layer plane and phase fluctuations
depend mostly on the phase-amplitude a-factor defined in
eqn. 9. This factor is shown in Fig. 9 for GaAs as a func-
tion of the carrier density by plain lines, at the peak-gain
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frequency v,, («,), at 90% of peak gain and v > v, (o),
and at 90% of peak gain and v < v,(x_). The latter two
results are of interest for distributed Bragg reflector

3r e

- 2

S 2 ] I \

1 1 LB J: 1 1 | 1 L L

0 1 2 3 4 5
n 10"% em=2

Fig. 8  Variation of the dimensionless differential recombination rate s
as a function of carrier density for the three materials

10

x5

) L ! ! ] 1 ! 1 1 L
0 1 2 3 4 5

n, 10"% cm™?
Fig. 9 Variation as a function of carrier density of the a-factor for
Gads at peak gain (2,), at 90% of peak gain and v < v, (x_), and at 90%
of peak gain and v > v, (a.) (plain lines)
Dotted curves are similar except that band-gap shrinkage is not accounted for

10~

E -

c

e

I

L oo
n, 10% cm
Fig. 10  Variation as a function of carrier density of the a-factors at

peak-gain for the three materials
The lower curves give the population inversion factor n_, at peak gain

(DBR) lasers since this type of laser may not oscillate at
the peak-gain frequency. It is advantageous to operate at
v > v, if one wishes to reduce the laser linewidth, as is
well known. The carrier density should be moderately
large if « is to be minimised. The dotted lines in Fig. 9
give the result of the calculation made without taking
band-gap shrinkage into account. Band-gap shrinkage
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tends to reduce the x-factor, particularly at frequencies
v < v,,. This can be understood by noting that a shift to
lower frequencies of the ¢’(v) curve as n is incremented
from n to n + dn enhances the term éa’'/én which appears
in the denominator of the expression of «, particularly for
v < v, whereas the numerator is not very much affected.

The a-factors and n, at peak-gain frequency, denoted,
respectively, by «,, and n,,, are plotted in Fig. 10 as a
function of n for the three materials. The large increase of
« as one goes from GaAs to InAsSb is due both to an
increase of the heavy-hole conduction-electron mass ratio
and to the plasma effect, which is proportional to the
wavelength.

5 Application to the evaluation of laser-diode
frequency fluctuations .

To illustrate the previous results, let us evaluate the fre-
quency fluctuations of a Fabry-Perot GaAs laser diode.
The rear and front facet power reflectivities are assumed
to be raised by coatings respectively to unity and to
R = 0.8. The length L, width w and active layer thickness
d are taken, respectively, to be 30um, 5um and

0.085 um. The refractive index, according to Fig. 4 for

n = 1.65 10*® cm ™3 (anticipating a gain of 200 cm ™ ?) is
n, = 3.63 and the group index is n, = 4.83. The peak gain
frequency v, =338 THz. The confinement layers
Ga, gAly ;As have refractive index n,. = 3.45 and group
index n, = 4 at that frequency [31]. The normalised fre-
quency v, (usually denoted by V in integrated optics) and
confinement factor I" are calculated [5] from

20 e ayd ] !
Vo = e '\/(‘nr—nrcjz r“"-’1+2v3
We find " = 0.186. The semiconductor gain is then given
by

(10)

_In(1/R)
9% ="orr

From eqn. 2 this gain .value corresponds to o), =
—190 S/m which is achieved at n = 1.65 10'® cm~>. The
threshold current density J,, is found from Fig. 5 to be
0.092 mA/um?>, and the threshold current is I, = ¥°J,, =
1.17 mA, where ¥ = 12.75 um? denotes the active-region
volume.

The cold-cavity linewidth f, = 1/277,, is given by

S N S o
" In (1/R) 1-_51=*c/r:

ge

=200 cm~* Can

(12)

t is the round-trip time, év the free-spectral range or fre-
quency spacing between adjacent longitudinal modes and
7, is the photon lifetime. From egn. 12 and the effective
group-index value calculated from the previous data
ng = 4.17, we find v = 1.2 THz and f, = 42.5 GHz.

The semiconductor parameters relating to the pumped
material at 338 THz and for an injected electron density
of 1.65 10*® cm ™3 are given in Table 2.

The bilateral spectral density of the laser diode fre-
quency fluctuations at frequency f in the absence of
injected current fluctuations is given by [1]

4P/f3)S s =1% + 2n, + o*g*
X[{=1+2n0+ 1/fH)|D?
"IDI? =[g + (s + w)D* + [, + uy") — g/£,]?
fa=flfo {=YVS/P r= 2nfon/S
y=y +jy' =Y/G, (13)
84

The parameters g, s, n,, « and u are given in Table 2. hvP
is the laser output power that we choose equal to
14.74 mW, corresponding to I/I,, = 10,.and { = 0.11. We
also calculate r = 769. In eqn. 13 we have taken into
account the electrical admittance connected across the
intrinsic diode. For buried heterojunctions with blocking

Table 2: Pumped-GaAs parameters

Steady-state

Parameters: U Jen g, n, n,
(V) (mApm?) (cm-")
1.39 0.092 200 1.97 3.63

Differential

Parameters: v s g o ng
0.06 1.75 4.43 293 4.83

Calculated parameter values for pumped GaAs. T = 300K, frequency
v=338 THz (peak-gain frequency) and carrier density n =165
10" em-?

layers with total resistance R = 105 Q and capacitance
C = 337 pF. We have Y, = 655 (1 + ) \/(f,)mS. We have
used the numerical values and the expression given in
Reference 6. This expression is valid above a frequency of

the order of 1/RC, independently of the blocking layer

length. The series resistance R, is considered to be in
series with the infinite-impedance current source and
does not matter here. G, = [,,/U = 0.84 mS is the static
diode-conductance at threshold. From the previous data
we calculate y' = y" = 780,/(f,). For the kind of laser
considered, this electrical admittance, external to the
intrinsic diode, significantly damps the relaxation oscil-
lations.

The variation of the spectral density as a function of
the baseband (or ‘Fourier’) frequency is shown in Fig. 11.
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Fig. 11 Bilateral spectral density of the frequency fluctuations of a
laser diode without injected current fluctuations

The dotted curve is calculated without accounting for the electrical admittance
external to the intrinsic diode and due to the blocking layers. The laser linewidth
given in the text follows from the low-f limit of these spectral densities

T!ua dotted line corresponds to the case in which the elec-
trical admittance external to the intrinsic laser diode is
neglected. From the low frequency behaviour of the fre-

quency spectrum we deduce a laser (full-width at the half- -

power points) linewidth

Av = 1.63 MHz : (14)

Note that the short laser length is compensated by high
mirror reflectivities. This is why a rather small laser line-
width is obtained.

Above f,, the spectral density of the frequency fluctua-
tions is proportional to /. This result is predicted either
by quantum optics or Nyquist’s theory [1], but not by
standard rate equations. Physically, the spectral density
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increases because the noise wave generated by the detec-
tor is reflected by the laser and thus adds up to the
carrier. This results in a white spectrum for the phase fluc-
tuations, For diodes of large length this behaviour occurs
at frequencies of practical significance. The practical con-
sequences will be examined in a separate paper.

6 Conclusion

We have evaluated in a unified manner the semicon-
ductor optical parameters that are relevant to room-
temperature operation of laser diodes at 0.87 um,
1.55 gm, and 3.87 gm. The latter kind of laser has been
demonstrated so far only below 160K. There is hope,
however, that it may operate at room temperature in
pulsed conditions in spite of strong Auger’s effects. In the
evaluation of the parameters we have employed accurate
expressions of the optical gain, taken into account the
light-hole contribution, plasma effect and band-gap
shrinkage. The latter effect leads to a reduction of the
phase-amplitude coupling factor «, particularly below the
peak-gain frequency. For the sake of illustration, the fre-
quency fluctuations of a Fabry-Perot’s GaAs laser diode
have been evaluated using expressions previously derived
from Nyquist's formula. For some laser diode types the
admittance external to the intrinsic diode may strongly
damp the relaxation oscillations. The evaluations given in
this paper would enable us to quantify the frequency
modulation properties of diodes whose «-factors vary
along the diode length because of varying saturation con-
ditions [7].
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8 Appendix: Detailed formulas

All the formulas given in this appendix have been derived
from first principles, namely the one-electron Schrodinger
equation and Fermi-Dirac’s distribution. Kane’s k-p for-
mulation is used. Strict x-conservation rule is assumed
and the parabolic-band approximation is made. For the
sake of brevity, the formulas used in the main text are
listed here with only concise explanations.
Fermi-Dirac’s F,, function is denoted here z(r):

2_|”® JO)
z(n) = .[ d 15
J@ J Tren(y—m a

The inverse function 75(z) is calculated numerically for
0 < z < 100 and stored.

Conduction and valence-band equivalent state den-
sities are

n. = 2(2rem kT/h*)*?  n, = 2(2rm, kT/h?)?/? (16)
where k is Boltzmann’s constant, T the absolute tem-
perature, h Planck’s constant, and m, is defined by

my? = my? + mi? (17

For undoped materials charge neutrality implies that the
hole density equals the electron density: n = p. Then, for
some n-value we calculate

r!'c = q(nr‘rnc] My = ril(n/”v) xF =N + qv (18}
where the function n(z) defined in eqn. 15 has been used.
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The voltage U(n) across the intrinsic diode is given by

kT E,, —pn'"

s [xp+x,n)] x,n)= —Lﬁﬁ— (19)
3 143 Z

B= 0.?3(-—-) - o E: (20)
14 2re

¢, is the static relative permittivity given in Table 1, and
¢o is the free-space permittivity. The coefficient g
expresses the band-gap renormalisation due to Coulomb
effects, the exchange integral being neglected. The factor
0.73 in front of egn. 20 follows from Reference 32. Thus
B~ 32 1078 if the energy is expressed in e¥ and n in
=3
cm %
The real part ¢'(v, n) of the conductivity is given from
Kane's theory by
2n e 1+ AJE m. m
=2 E SV N e e £ it
3 R I1+3AE, YO T](m:‘ m)

32 a2
() a0+ (2) -]

x /(X1 + x/x) " (21)

for v > 0 and ¢/(—v) = ¢’(v). The quantities introduced in
eqn. 21 are defined below. This parabolic law holds only
for x-values not exceeding a few units. We have defined

)C:ﬁ andfuh

feh =1 +cxp<——-n, +r—?x)

[

.

I

fil=1+exp (m ¥ % x) (22)

h
where

1 1.4 4 3.1 -

Hy mc my, ﬂf mc my
Two other functions f;, f,; are similarly defined with ‘i’
changed to ‘. For unpumped materials, [, =f,; =0,
fox =fu =1, and ¢’ = B/(x), with B a constant. The first
term in parenthesis in eqn. 21, which corrects for the fact
that m, is not quite negligible compared with m and for
upper-lying conduction bands, is equal to 1.2 for GaAs.
The last term in eqn. 21 can be neglected when the gain is
evaluated, but it is important in the Kramers-Kronig
transformatiqn, egn. 26, since the integration extends in
principle to infinity. We have also defined

hy — E E
=0l iy = = 2
= Twr T er (238)

where E, is the reduced band-gap energy in eqn. 19.

After lengthy but straightforward calculations, one
finds that the population inversion factor nv, n) defined
in eqn. 4 from the above expression of ¢’ is given exactly
by the simple expression

1

"1 ep ) 9

ns
The radiative spontaneous emission rate per unit volume
S(n) into a homogeneous medium of refractive index
equal to n, can be evaluated from the classical radiation
of the Nyquist-current noise sources provided both the
active material and absorbers at spatial infinity are con-
sidered [13]). The expression is

S, = 8mugyn, [ — n, (Vo' (v)v? dv (25)
Jo

36

Alternatively, Einstein's relation between stimulated and
spontaneous emission coefficients can be used.

Once the real part ¢'(v, n) of the conductivity has been
obtained, the imaginary part ¢” follows from Kramers-
Kronig's (KK) relation, at some value of nand v > 0

2nv|im. m, m

_ipf : a[z,n)dz

s s I=V

2
e n
a’(v, n) = —2nveq + — |:~ & < + ﬂ]

32

pu/pr = (my/my) prtp=p=n (26)

The term in brackets in egn. 26 can be written simply as
n/m, if we define a reduced mass m,

m=t=mIt+ (my 4+ m ) m? + m?) 27

The first term in the expression of ¢” is the vacuum con-
tribution and the second term is the plasma effect, whose
corresponding loss is not included in ¢'. ¢ denotes a
‘principal value’, that is, the interval z=v—¢ to
z=v + ¢ is omitted in the integration. The numerical
accuracy was checked against analytically known solu-
tions, such as eqn. 28 below. A value hg/kT = 0.02 is
found to be appropriate. When the expression for ¢'(v) in
eqn. 21 is introduced in egn. 26 we find that the integral
converge at large z-values because of the last term in this
expression. In the absence of pumping, the analytical
result, first obtained by Cardona [33] from an integra-
tion in the complex plane, can alternatively be obtained
by integration along the real z-axis if an appropriate lim-
iting procedure is used. We have

J.” V(1) du B {m’(l + ) >0
o ( (1 + J(—2) «<O

u+ 1u —x) (5%
The expression in eqn. 21 for ¢'(v) describes the optical
conductivity near the band-gap frequency only. Thus, in
the KK’s transformation this expression must be supple-
mented by a Dirac’s d-function of such position and
weight that measured values of the refractive index of the
unpumped material at two frequencies below v, are fitted
(n,0¢ and n,, s values in Table 1). This procedure has
been performed analytically using eqn. 28.

To introduce easily the band-gap shrinkage effect, the
integral in eqn. 26 is split into a positive-z part and a
negative-z part of lesser importance. These two functions
are calculated in matrix form with discretised x and n
values, to calculate their partial derivatives. The é-
function fitting procedure can be improved by requiring
that the sum-rule be obeyed; the integral of ¢'(v) from
minus to plus infinity must be proportional to the total
number of electrons in the semiconductor. Since this
number remains unchanged when electrons are promoted
from the valence band to the conduction band, the fol-
lowing sum-rule must be obeyed at any temperature

4 @
o j [o(v, n) — o'(v, )] dv
e’n o
— R BB R (g
m, myn mn

The numerical value of the right-hand side of this expres-
sion is 18.5 for GaAs. The left-hand side, evaluated on
the basis of Kane's four-band approximation, is found to
be equal to 20.1, indicating a fair agreement.
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