ADIABATIC METHOD FOR FIBRES WITH
NONSEPARABLE INDEX PROFILES

Indexing terms: Optical fibres, Wave propagation

A new powerful numerical technique is proposed that quickly
gives the propagation constants, group velocities and caustics
of modes with specified numbers in multimode fibres of arbi-
trary 2-dimensional index profiles. This method is based on
the adiabatic approximation of ray optics.

Introduction: Most optical fibres fabricated today have a
nominally circular shape; that is, the index of refraction is
supposed to depend only on radius. However, significant de-
partures [rom circularity are often observed in practice,' and
one may wonder what degradation in the fibre bandwidth re-
sults from these deviations. On the other hand, noncircular
profiles may be just as good as circular profiles for high band-
widths, whether the profile dispersion is linear? or
nonlinear.**

A great deal of interest has thus appeared recently in optical
propagation in multimode fibres that have noncircular step- or
graded-index profiles. Unfortunately, analytical results are
limited to separable geometries.*~” Using numerical methods,
it is easy enough to trace rays for any profile n(x, y), but, in
general, one does not know how to relate these rays to specific
mode numbers because it is not easy to apply the quantisation
conditions. Therefore, one does not know in general how to
calculate the impulse response of the fibre, which is needed in
applications.

We shall describe in this letter a new and powerful numerical
method for obtaining the propagation constants, caustics, and
group velocities associated with the various modes that can
propagate in multimode fibres of arbitrary index profiles. The
method, based on &n adiabatic principle, was recently
proposed in the field of quantum mechanics by Solovev.®

The numerical methbd consists in tracing rays in @ medium
that varies continuous.y and slowly from some index profile
that is separable in rectangular, polar or other co-ordinate
systems to the profile' under study. This adiabatic principle
states, in short, that/ mode numbers (m, n) are invariant
provided that the cha j ges in profile are slow enough. In purely

geometrical terms, thi{ amounts to stating that the ray actions

are invariant (the ray action in one dimension is defined as a
surface integral in the phase space {x, dx/dz}—see Reference 9).
One should, however, avoid profiles that are degenerate in the
sense that different modes have the same propagation
constant, as is the case for circularly symmetric square-law
profiles. From a numerical point of view, the index variations
are considered to be slow enough if characteristic parameters
such as the propagation constants or the group velocities are
insensitive to any increase in slowness. One must also check
that these parameters are independent of the choice of the
initial profile (within limits imposed by the caustic topology),
and independent of the choice of the rays that correspond to
the specified mode number,

In this letter, we provide the basic equations and treat as an
example some power-law, noncircularly symmetric, index
profile. By using our adiabatic method, new results are
discovered.

Basic equations: Because the relative index change A is usually
small compared with unity, and the fibre is highly multimoded,
it is permissible to use the laws of paraxial ray optics:

X=p y=4q

yo U, _aU

=~ Ty

U a=1-"823 o001
0

for some arbitrary z-dependent n(x, y, z) profile. Upper dots
denote derivatives with respect to z.

Integration of the system of eqns. 1 starts from some profile
n; separable either in an (x, y) rectangular co-ordinate system
(in order to obtain, in the final medium, caustics of the hyper-
bolic type), or in an (r, ¢) polar co-ordinate system (to obtain
elliptic-type caustics). For rectangular co-ordinates (x, y), one
selects an initial profile U,(x, y) = U.(x) + U,{(y), and picks up
initial values of x, X (respectively, y, ) such that the surface
integral of the closed curve in the {x, %} ({y, y}) phase space is
equal to m/4 (n/4), where 1 = 2me/wn,.

In our examples, we have selected square-law media:

Uy =Alx/x)’ @)
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and the initial conditions

p(0)=0
x(0) = {(m + DA/nQ2}?

Similar relations hold in the (y, z)-plane with y. = x.

In polar co-ordinates (r, ¢), the most interesting case is the
one where the radial mode number « is equal to zero. The
corresponding rays are circular in projection, with a radius ry
such that ro = {uir?2n./(4A)}"/°, where the integer u denotes
the azimuthal mode number. If U(r) = | — n(r)/no denotes the
profile, the initial values of x, y. p. ¢ may be taken as

x0)=rs ¥0)=
p(0)=0 (0) = \/(4A)(ro/re)? (4)
u=2nr3/ (4A)/ir?

In the forthcoming examples we select U(r) = A(r/r.)*.

It is remarkable that, after adiabatic transformation, the
projected ray remains a closed curve. The z-integral of p? + ¢*
over that closed curve must remain equal to its initial value.
This is, like y, an adiabatic invariant.

Once the ray has arrived at the medium under study with
index n/(x,y).or Uy = | — ng/n,, we evaluate the propagation
constant of the mode labeled m, n (or y. «) from the relations:

B=2x(1 —E/)h
Ep=Ugxy) + 30" +¢°) (5)

The times of flight could be obtained by considering a small
change of w, keeping m, n constant, and looking at the corre-
sponding change of p. But it is easier numerically to evaluate
the average value U, of U, defined as the limit of the integral
alonga ray fromOto zof U, divided by z, when z —+ co. We have
verified that this limit e:usts The ratio r of the time of flight of
a pulse carried by the mode considered divided by that of a
pulse carried by the fundamental mode (modelled as an axial
ray), is then®

1—1-5;—20: (6)

For the sake of simplicity we have neglected the material
dispersion. An alternative method consists in evaluating E; not
just for the mode m, nof interest, but also form + 1,n + 1, and
using the formula

CE! ﬁE;
t—1=—E +m=L 4nSt (7

in finite-difference form.

Example of application: We have studied the modes of propa-
gation in the nonseparable noncircular profile:

U lx, y) = Al(x/xc)f + W/yef' ) (8)

with A = 001, x, = 50 um, y. = 33 yum and 4 = 1 um,

The change from the initial square-law profile U, to U, in
eqn. 8 is effected by writing the exponcm ofthe bracket in eqn.
8 in the form 1 + z/Z,, with Z, = 10°, and terminating the
integration at z = Z,. For the numenca] integration of the ray
equations (eqn. 1), we used the Euler mcthod, with an integra-
tion step of 5 um. The computing time is of the order of 15 min
on a HP 9835 desk computer.

For m = 2, n = 3, for example, we found a normalised prop-
agation constant E = 19825 x 1073. The relative time of
flight * — 1 is found from eqn. 6 to be 0:66 x 10~ and, from
egn. 7, 077 x 10~2. A theoretical formula for profiles such as
the one in eqn. 8 that are homogeneous functions of degree 2x
in x and y is:?

r—1=[(x - 1)/x + D]E ©)

Thus t — 1 should equal 0:66 x 102 since here xk = 2. This is
in very good agreement with our numerical result from eqn. 6.
The agreement is not as good with egn. 7 because we have there
replaced a derivative by a finite difference. A typical ray trace is
shown in Fig. L.

Fig. 1 Ray and caustic (dotted line) for the profile inegn. 8 and m = 2,
n=3

To obtain modes with elliptical-like caustics, we used as the
initial medium U; = A(r/r)*, with r = 50 um, and traced rays
with the initial conditions given in eqn. 4 and u = 10, 20, 30
(see Fig. 2). We have verified that there is nothing peculiar with
profiles homogeneous in x and y, and that similar results can
be obtained with other profiles as well.

Fig. 2 Closed ray traces for the profile in egn. § (radial mode number

« = 0} various values of the azimuthal mode number p= 10, 20, 30
Corresponding normalised propagation constants are E, = 1:17
x 1073, 3 x 1074, 52 x 107%; relative limes of flight are 1 — 1 =
39 x 10741 x 1073 17 x 1073

Some of the modes obtained by our ray technique have a
normalised propagation constant larger than A, and thus
should exhibit leaks. The calculation of the modal field and the
leak (if any) from the ray traces is possible, but this will not be
discussed here.

We have limited ourselves to the scalar approximation, but
it is possible to obtain the split in degeneracy between the two
electromagnetic modes associated with a given scalar mode by
using the ray theory of electromagnetic modes proposed in,
Reference 10, which consists of the calculation of the integrated
torsion of the ray path. To conclude, the new adiabatic method
proposed in this letter appears to be a powerful technigue for
treating multimode optical fibres that have almost arbitrary
index profiles. The computer time that this method requires is
quite moderate. Using the method, we have found that, in
fibres with nonseparable profiles, closed ray trajectories exist,
which correspond to modes with zero radial order. This seems
to be a new result, The profiles of noncircularly symmetric
fibres can be measured by the method discussed in Reference 1.
It is then an casy matter to calculate the ray trajectory for each
mode, using eqns. 1 to 4, and calculating the time of flight,
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preferably from eqn. 6. From these times of flight, the impulse
response is obtained in a straightforward manner.
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