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The purpose of this letter is to show that the quasi-geometrical-
optics method used in a previous paper! to describe the propaga-
tion of optical modes and the results obtained there are applicable
to anisotropic as well as to isotropic media.

Let us first recall that the ray equations in lossless media are
obtained by substituting in the wave equation fields of the form
G(r) exp[— j&S(r)], where k= 2x/) denotes the free-space propa-
gation constant and the cikonal S(r) is real. Keeping only the
terms with the highest power in &, we obtain an algebraic relation
between the cartesian components p;=aS/dx;, i=1, 2, and
d5/dz of V.5, which can be written

H (psr)+05/9z=0, (1

The rays, defined as the lines of flow of power, are perpen-
dicular to the Fresnel surface of wave normals described, at some
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fixed point r, by the tip of the vector £¥S. This is expressed by

Hamilton's equations for rays x;(z)
dxi/ds=aH /ap;,
dp:/ds= —(dH /dx;).

(2a)
(2b)

These equations, identical with those of classical mechanics,
show that the rays of geometrical optics are similar to the tra-
jectories of material particles.?

Let us now consider a packet of rays making small angles with
one another (though not necessarily with the z axis), and assume
that, to one ray, there corresponds only one vector VS. For such
a packet, we are interested in only a small portion of the Fresnel
surface, which can be replaced by a paraboloid. Equation (1) is
rewritten

as a5 a8  as
AR § S et =
S+8 6£.'+£ * *ax.- 6xx+ 9

az"’ L] (3}
where the summation sign over repeated indices is omitted and
[, 81, B2, hu, hos, and Jia= s, are six real functions of r that ean
be obtained from the material parameters,

The optical distance from a point ¥/, 0 to a point x;, 1 in a
homogeneous medium is easily obtained with the help of Eqs. (2a)
and (3). We have, without any further approximation,

S (2,05 wp1) = — fH5 (W) (v —xi—g0) (0’ — 26+ g0),

where h is the matrix with elements /iy, Jis, hs.

In homogeneous media, the point eikonal is therefore a quadratic
formin 2/, x,. When the medium is not homogeneous, it sometimes
remains possible Lo approximate the point eikonal by a form at
most quadratic in #', x (Gauss approximation). In those cases,
the relation between wx, p/=—aS5/ax/ at z =0, and w,
pi=d5/dx; at g, is linear and can be described by a ray matrix as
for the case of isotropic media. The expression “ray matrix,”
however, becomes somewhat inappropriate because the p's are
related to the wave normals, and not directly to the rays.

Following the rules of quantum mechanics, we now obtain the
paraxial wave equation by ordering Eq. (3), and replacing 45/ dx;
and 85/dz by the operators j&~1a/dx; and jE1a /az, respectively ?
We obtain

ad a
i1 L i
I:f+ bk (g, d:r(+ ax.-*"” )

4

gy @ @ @
HGY T has ;k-la—z].;, =0, (5

where ¢ is a scalar field function such that y¢*ds represents the
power flowing through a small area ds in the plane z.

Let us evaluate the geometrical-optics field created by a point
source and find under what conditions this field is an exact Green
function of the paraxial wave equation, Eq. (3).

Consider an incident field ¢' at r' uniform over an area ds'
whose dimensions are of the order of a few wavelengths, and
zero elsewhere. The area covered in p space by the components of
the wave normals in this beam at 3’ is of the order of A*/ds’,
because the phase shift cannot exceed = within the area ds'.

Let us consider next a cone of rays originating from r' whose
end points cover an area 5 at z. The area covered in p space by
the wave normals at 2’ is easily found to be |25 (r';r) /8x. Ay |bs,
where the vertical bars denote a determinant.

If we now observe that the power flowing through two homo-
centric cones of rays is in direct proportion to their solid angles,
and also in direct proportion to the area covered in p space by
the wave normals, because small increments are considered,
power conservation entails that

J_| 9%5 fdx dxy |65

XQIJJS’ (6}

e =y *ds

to within a numerical factor that can be shown to be unity.
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The phase of y, on the other hand, is x/2—4S, mod. r, if the
anomalous phase shifts in the neighborhood of ¢’ and subsequent
foci is taken into account, We thus obtain for the geometrical-
optics field created by a point source at r’ the Van Vleck
propagator®

Y(r; o) = A0S /ax dxg |} exp(— jkS), (7
as for the case of isotropic media.

Substituting the right-hand side of Eq. (7) in Eq. (5), we find
that the terms proportional to (f%)° and (jk™Y)* vanish, in
agreement with the correspondence principle? The last term,
proportional to (&2,

d
3\ exp(— j5S) GhP - bl |3t foxlomeld,  (8)
ax; &:\";,

clearly vanishes also when § is at most quadratic in x;, %/, for

every z, ¢, i.e., within the approsimation of Gauss. In that case, |

the right-hand side of Eq. (7) is the exact Green function of the
paraxial wave equation.

This expression, Eq. (7), is applicable to optical systems with
nonuniform losses by introduction of complex point eikonals.!
The multipole expansion of the field created by a point source
through an arbitrary lossy and misaligned optical system (called
in Ref. 1 a “‘mode-generating system”) readily gives the modes of
propagation, expressible as products of Gauss functions and
Hermite polynomials in two complex variables. Because we need
consider here misaligned mode-generating systems, the wave
fronts of modes associated with anisotropic media are generally
tilted, possibly at a large angle, with respect to the beam axes.

A difficulty arises in optics from the fact that the Fresnel
surface exhibits two shells, corresponding to two orthogonal
eigenstates of polarization.® Thus, to a given ray there correspond
two waves and not just one as assumed before. However, if the
beat wavelength between these two waves is small compared with
the scale of the inhomogeneities, the waves remain uncoupled
and the results given in this letter are applicable to each eigen-
state of polarization independently. The present theory is generally
not applicable if there are abrupt spatial changes in the medium.
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