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A simple procedure is descrilbed to obtain the mod
procedure consists of evalualing the geometrical-opti
an optical sysiem (called mode-generating system)

with nonuniform losses. An expansion of the field in

power series of the coordinates of the point source gives the modes of propagation, In the case of optical
resonators, the mode-generating system is described by the modal matrix of the resonator round-trip ray
matrix. This representation of modes by point sources allows the coupling factor between two modes with
different parameters (Leam radii, wave-front curvalures, and axes) to be evaluated without integration.
Only matrix algebra is used. In the general three-dimensional case, the coupling factor is expressed as a
product of Gauss functions and Hermite polynomials in four complex variables, The quantities introduced

are generalized ray invariants,
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It is well known that, within the first-order approxi-
=ztion, the modes of Propagation of optical beams in
“wo-dimensional optical systems are Hermite-Gauss
“enctions.! In the more general case of three-dimen-
sonal optical systems that lack meridional planes of
srmmetry, it is necessary to introduce Hermite poly-
“omials in two complex variables 2 A simple procedure
s described in this Paper to obtain these generalized
=ades and to calculate the coupling factor between
=odes corresponding to different parameters (beam
=2, wave-front curvatures, and axes). The latter
===ult is useful in evaluating, for example, the power
“ansfer between a laser source and a resonator, or the
as¢ of heterodyne optical recejvers, The expression
“==zined generalizes previous results,

‘= the first section, a few results of paraxial geo-

==tncal optics are recalled.

THE GEOMETRICAL-OPTICS FIELD

-ousider a lossless optical system with an input
“=er=ace plane (x) and an output reference plane (x%).
== cpucal distance between a point x at the input
#a== znd a point X’ at the output plane is extremum
¢ = certain path called a ray; it is assumed that this
#== % unique. The optical length of this ray is called
Doint characteristic of the optical system and is
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- == point where a ray intersects the input plane is

w===d by a position vector q, represented by a column
TSTE inoa xxs rectangular coordinate system. The

#====ton on the reference plane of a vector directed
e ray having a length equal to the refractive

7

mier x is called the direction vector of the ray and is
“=miied p. Wesimilarly define the position and direction
w==rsq’, p’oof the ray at the output plane.

“s = well known, p and p’ can be obtained from the
Sz O

aracteristic ¥ (x,x’) by differentiation?
p=— va("rxr)l (1a)
D'= v,'V(X,X’), (Ib}

at x=gq, x’=q". In Eqgs. (12) and (1b), ¥; and v,.
denote gradient operators in the (x) and (x') planes,
respectively.

Let us now consider a point source located at a
point x of the input plane. The geometrical-optics
scalar field created by this point source at the output
Plane is, within the paraxial approximation 4.4

.mmﬁ=iﬂﬁmwﬂmgﬂam~ﬁm,aj
where k=2x/) denotes the free-space propagation con-
stant and the vertical bars denote 2 determinant. For
simplicity, we assume that the refractive index is
unity on axis. The physical significance of the ex-
ponential term in Eq. (2) is obvious. It expresses the
phase shift resulting from the optical length V. The
term |92V /9x.0x; |4 is obtained by recognizing that the
power flowing through a small area at the output plane
is equal to the power flowing in the corresponding cone
of rays leaving the point source, and using Eq. (1).
The factor j can be viewed as an anomalous phase
shift at the point source, similar to the one observed at
focal points of ray pencils. The sign ambiguity in Eq.
(2) can be lifted only if the number of focal lines
existing on the ray pencil that originates from the point
source is known, Knowledge of the point characteristic
Is therefore not quite sufficient to determine the field
at the output plane. This turns oul to be, however, a
restriction of minor importance. Note also that for beams
Propagating from the output to the input plane # in
Eq. (2) should be changed to —k.

Let us now assume that the point characteristic can
be approximated by a quadratic form

V(x,x')=L+§iUx+iVx’+%i’Wx’, (3)

where L denotes the optical length of the optical axis.
U and W denote two 2x2 symmetric matrices, V a
2X2 matrix, and ™ indicates matrix transposition.
Introducing Eq. (3) in Eq. (1), we get the paraxial-
ray equations
—p=Uq+Vy'

p'=Vq+Wq'.

(4a)
(4b)
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The field of a point source is, from Eqgs. (3) and (2)

L(X;x) ==\ V|3 ;
Xexp[ — jk(L+3%Ux+5Vx'+ £Wx)]. (5)

'i_‘his expression, Eq. (5), can be used as a Green fune-
tion to obtain the transformation of an arbitrary
incident ficld E(x). The field at the output plane is

E'(x’)-—-ff E(x'; x) E(x)dayd . (6)

Notice, incidentally, that if the optical system is cmpty,
Eq. (6) reduces to the Fresncl approximation of the
Kirchhoff integral.

If we want to know the ficld transformation through
i sequence of two, or more, optical systems, there is no
need for applying Eq. (6) repeatedly. It suffices to
evaluate the total point characteristic by adding the
point characteristics of each individual oplical system
and eliminating the intermediate variables, and apply
Eq. (6) only once. The proof that this procedure is
valid can be found in Ref. 6 or 2.

This result allows us to apply Eq. (5) to systems
with nonuniform losses, provided that these losses can
be approximated by quadratic laws (in decibels).
Consider, for instance, an apodized aperture intro-
ducing on incident fields an attenuation of the form
expl — (v/w)*] where w denotes some effective radius,
This aperture is formally equivalent to a thin lens with
an imaginary focal length — ji1?/2. The peint charac-
teristic of an arbitrary sequence of lossless systems and
apodized apertures can therefore be obtained by apply-
ing formally the rule of point-characteristic addition.
This point characteristic is, in general, a complex
function of x and .

The subsequent calculations could be based only on
the consideration of point characteristics, It is, however,
convenient to introduce also the ray matrices which
relate the output quantities ¢, p’ to the input quantities

VI

By comparing Egs. (4) and (7), we readily obtain

U=B-A, (82)
V=—B-, (8b)
V=C—DB-4, (8¢)
W=DB-. (8d)

Luneburg’s relations® are obtained from Eq. (8) if we
remember that U and W are symmetrical. We have in

RNAUD Volfé6l
particular
BD—DB=, (9)
CA—AC=9), (9b)
DA-BC=1. (9c)
These relations show that the inverse of M is
mz~==[ Ly _*B]. (10)
—~C: A

We will find it convenient to introduce also matricial
rays Q, P defined by

Q=[q.q.], (11a)
P=[pyp.]. (11}

where qu, p; and gz, p» denote any two rays satisfying
Eq. (7). Clearly, we have

Q7 rAa B Q]
= J ] (12)
) Lc pllp] |
Let us now consider two rays with position and
direction vectors q., p. and gs, ps, respectively. The
scalar quantity
quﬁn‘_ﬁnaﬁ (13”
is known as the Lagrange invariant3; it assumes the
same value at the output and input plane of an optical
system, as we easily verify with the help of Eq. (4).
For later convenience, we denote this invariant

1o Ps—Palls=4 4 (@; B). (14)
We also define a matricial ray invariant
QuPs—P.Qs=1jk(a; ). (15)

Up lo now we have implicitly assumed that the
optical system is aligned, i.e, that the point charac-
teristic does not contain linear terms in x, x’. In the
more general case of misaligned optical systems, 53X 5
ray matrices have to be introduced. We have, in that
case, instead of Eq. (7)

9| [A B allq q
p'[=|C D c||p|=M|p|; (16a)
1 0 0 1)1 1
where a and ¢ denote vectors. The inverse of M is
D -B ]-lc—lj_a
MA=-C A Ca—=Acl. (16b)
0 0 1

4
The point characteristic now contains a linear term
ux+u'x’, where
u=B"a (17a)

uw'=c—DBa. (17b)

Lo

/
{
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T=e expression, Eq. (13), is no longer invariant. To
f=£ne a ray invariant, we must introduce an auxiliary

=2y +(q,,p,) and set

i--'?-h}(ﬁﬁ'—ﬁ"r)_(ﬁu'_ﬁ:r)(liﬂ_a?) i
=4k a—7;8-%). (18)

We will also make use of a vectorial ray invariant

Qa(ps—y) —Pu(@s—0,)=4jk" (@; 5—7), (19)

wocre it is assumed that Q,, P, obey the ray equations
% = no misalignment terms.

The transition between ray optics and wave optics
= zmow to be made simply by allowing the ray com-
sements to assume complex values. This procedure is
f=oussed in the next section.

MODES OF PROPAGATION

et us consider an optical system (®) described by a

sy matnx
JRQ! Q]

jkPt PJ it

el
Jecsose I is a ray matrix, it must satisfy the Luneburg
mue of inversion, Eq. (10). The 2X2 submatrices Q, P,

o P zre otherwise arbitrary and may assume complex
sues According to Egs. (9a), (9b), and (9¢), we have

QP—PQ=0, (21a)
QiP:—P1Q:=0, (21b)
QP:—PQi=4 k1. (210

“uese rciztions show, in particular, that PQ—! and
0" 2= symmetrical matrices. Note that no special
we ooance s attached to the sign 1. However, if we are
o wessc=d only in lossless optical systems, ! can be
s oowc by astar indicating complex-conjugate values.
W« = the optical system (¢)) a mode-generating
e for 2 reason that will now become clear.
_s v denote the input plane of this system, and
“se cutput plane. The field created at x by a point
: y is obtained from Eqs. (3), (8), and (20).

1 1

S
2=

L

k
= 3 ==(x/2)":| Q| exp(—jEiPQ"lx)

I

Xexp(27kyQ'x—1jkyQ1Qt jky). (22)
& wmeoanc factor has been introduced in Lq. (22) for
== =ovenience. The geometrical-optics phase shifl is

stz for brevity.
.= =-st assume that the source is localed on axis

=i, The feld "
- 0)===/2)} Q| exp(—j:-—,iPQ'“'x) (23)

represents a gaussian ficld, provided that the imaginary
part of the complex symmetrical matrix M=PQ~ is
definite negative. When this condition is satisfied, the
beam represented by L(x; 0) carries a finite power at
plane (x) because, in that case, the field amplitude
decreases exponentially as x*+x2? tends to infinity.
In the case of lossless systems the field amplitude
assumes the form

exp(—%Q-1Q*x),

which clearly describes a gaussian irradiance pattern.
This expression is obtained with the help of Eq. (21¢),
where 1 is replaced by a star,

Consider now off-set point sources (y=£0). The
second exponential term in Eq. (22) is the generating
function for Hermite polynomials in two variables:
E(x;y) can be expanded in power series of jky; and
Jky2. We have

E(x;¥)= Y. (mimg)?
LI ]
X (Jky )™ fhys) " Eums(x), (24)
where

Epyma(X) = (x/2) 7 my e )3 | Q| =3
k
><cxp(—j-iPQ"x))z‘z’cm.m(2Q“1x;Q"‘Q‘}. (23)
2

Explicit expressions for Hermite polynomials e, .., (x;v)
are given in the Appendix.

To prove that the field £,.,x,(x) actually represents
a mode of propagation, let us assume that the mode-
generating system ((®) is followed by an optical system
(€) described by a ray matrix 9%, with an input plane
(x) and an output plane (x'), as shown in Fig. 1.
Instead of evaluating the transformation of the field
Lpymy (X) by the integral transformation Eq. (6), it is
simpler to calculate the total ray matrix corresponding
to the two optical systems (®) and (€) in sequence,

/ (x’)

I'ic. 1. In this figure (€) denotes an optical system having a
ray matrix W,. The modes of propagation in this system are oh-
tained by considering the geometrical-optics field created by a
point source S through a mode-generating system (8) whose ray
matrix I is generally complex.
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and apply Eq. (5). Let us therefore evaluate the ray
matrix

M=, (26)
Setting
m ks
p = ] 27
[ 5 @
and sq1 o
‘JJi’=%[J ] (28)
J!{'P:! Pl‘
in Eq. (26), we get
Q1 rA BrQ
PN A
P C DILP
and
Q¥ A Boro
T e
P C DILP

Comparing these expressions with Eq. (12), we see that
the complex matrices Q, P on the one hand, and Q¢,
Pt on the other hand, are transformed in the same way
as rays. The transformation of the wave-front complex
curvature M=PQ~! of the fundamental mode is readily
obtained from Eq. (29a). We have

M'=P'Q'=(C+DM)(A+BM)-.  (30)

To conclude this section, let us briefly indicate how
the modes of propagation just defined are related to
the modes of resonance of optical resonators. Let a

Tic. 2. This figure represents schematically a ring-type resonator
having a round-trip ray matrix 9, defined from a plane $. With
respect to the plane P, the round-trip ray matrix is the diagenul
matrix INDLIN, where M is the modal matrix of the resonator,
The modes of resonance can be viewed as resulting from a multi-
pole expansion of a point source S at P'.
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resonator be defined by its round-trip ray matrix M.,
defined from some arbitrary reference plane P (see
Fig. 2).

Tt is easy to show, using Eq. (4), that the eigenvalues
of a ray matrix can be written A", A%, A1, and Aa. 1f
the corresponding eigenrays (eigenvectors) are denoted
JR/2)BY, (R/2N.2, 4N, and 10, respectively, the
modal matrix is

M=10 A0 ¢ AN 0,0, ). 31)

The ordering of these eigenrays is defined by the
condition that the mode power is finite. In the case of
stable lossless resonators, such an ordering always
exists and is unique.?

Using the orthogonality property of eigenvectors of
M and of its transpose corresponding to distinct eigen-
values, it can be shown that the ‘modal matrix M.
Eq. (31), is itself a ray matrix, i.c., that it satisfies the
rule of inversion [Eq. (10)). With the notation of
Eq. (11), M can be rewritten in the form [Eq. (20)] of
the ray matrix of 2 mode-generating system. The modes
of resonance of an optical resonator are consequently
obtained by taking for M in Eq. (25) the modal matrix
of the resonator.

After a round trip, the eigenrays become, by defini-
tion, j(A/2At, j(E/DN1:2, IO, and JAR.,
respectively. It is not difficult to see that under this
transformation the mode field Enm,(X) given in Eq.
(25) reproduces itself, except for a constant factor
sexp(— jhL)AmrHinmat],

The self-consistency of the field in the resonator
therefore requires that

F=exp(— jhL)M ™ mrti = exp(2jir), (32)

where | is an integer called the axial-mode number.
Equation (32) gives the resonant frequencies and the
losses of the resonator. Because #L>>1, changing the
sign from + to — in Eq. (32) simply offsets the resonant
frequencies of all the modes by a small amount. The
sign ambiguity in Eq. (32) is therefore relatively
unimportant.

Letusnow give a physical interpretation of the modes
of resonance of optical resonators based on the previous
discussion. Let us suppose that two optical systems
(®™) and (&) with ray matrices M~ and M, respec-
tively, are introduced in the resonator, adjacent to the
reference plane P (see Fig. 2). Nothing has been
changed, physically, because MM =1. Taking now
as a reference plane the plane P’ located between (&)
and (®), the round-trip ray matrix becomes

P =M MM =D, (33)

where ® is a diagonal matrix with elements A%, Nt
Al Az

The modes of resonance can therefore be viewed as
resulting from the multipole expansion of a point source
located at a certain plane P’ in the resonator. I't should
be kept in mind, however, that I and I~ represent

L
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== systems with nonuniform losses and nenuniform
g réspectively. The plane with respect to which
“+e round-trip ray matrix is diagonal does not neces-
s~ v exist in a particular resonator.

COUPLING BETWEEN COAXIAL MODES

= have obtained in the previous section a general
=r=ssion for the field of the modes of propagation in
~.2-e law media. This expression depends on a complex

W

|

i
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matmx I that plays the role of a parameter. We wish
sow o evaluate the coupling factor between two modes
+ = 2:7erent mode numbers and different matrices I,
szwime the same axis.

1= E.(xz) and Esi(x,2) denote the fields of two
szl beams that propagate, respectively, in the +2
wn. —z directions, z being the axial coordinate. _

The coupling factor between these two beams is
f=fz2d by the integral

]
Cas= [] E.(x,2) Egt(x,5)dx1dxs. (34)

" = sasv to show® that C.; is independent of z. When
E, =2 'E,-i represent two modes of propagation, de-
w==ed by complex rays, we therefore expect Cas to be
weressitie in terms of ray invariants. We shall see that
s = indeed the case.

et us take for E,(x) the mode mym, generated by a
v TRLTIX
£Q.4 Qa i
ﬂ.nn"_-%[-” ], f33)
jkP3 P,
st fse Esi(x) the mode mi'my’ generated by a ray
-
—j4Qs Q4
‘m3==%[ . (36)
—jkP; Py

Sunstuting Eq. (35) in Egs. (8) and (5) and expand-
“u = zewer series of jkyy, jky: we obtain for the

= et

-3 . =(r 2}‘:(m;!mg!)“‘|0al_)

k
XENP(—j‘iiP‘:Qn_lx)

K Hemmi(2Q571x; Qa1Q4Y).  (37)

“usec suting Eq. (36) in Egs. (8) and (5) (with k
“wse=: o —k), and expanding in power series of
— ew = 2nd — jky:t, we get

B e (3= (/2)" (i b )Y Qg |7

k
2 exp(jii PgI Q,s‘_ I'X)

XHG..,-,“'(zQB_lX; Qﬂxﬁloﬂ)-
“ow at the fields E. and Est have been normalized.

(38)
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Fic. 3. This figure indicates how to evaluate the coupling factor
at plane (x) between a mode generated by a point source L8
through the mode-generating system (@), and a mode gtngm!.;:q.t
by a point sink Ss* through the mode-generating system (B4).
It is obtained by evaluating the Beld at plane (y*) created by a
point source at plane (y), or vice versa.

The coupling factor could be obtained by substi-
tuting Egs. (37) and (38) in Eq. (34) and integrating.
This would be most easily done by integrating ﬁrst_ the
product of the respective mode-generating functions
E.(x;y) and Egi(x;y!) and expanding the rest{lt in
power series of the four variables jkyi, jkys, — jhyy,
and — jkys!. Actually, it is not even necessary to per-
form the integration, if we recall that the cpupllng
factor is independent of the plane of integration. To
within a constant factor, the coupling between the two
mode-generating functions is the ficld at pianfe (")
which transforms at plane (x) into a field identical to
the field created by the point source S, (see Fig. 3).
Indeed, at plane (y!) the field of beam 8 reduces to an
impulse function.

To obtain the field at (y!) equivalent to Sa, we have
to evaluate the ray matrix M corresponding to the
mode-generating system (®,) followed by the mode-
generating system (®s!) taken from the output to the
input plane.

With the help of Eq. (10), we get

WM=Ms"Ma

1[ Ps  —Q4 ][ﬂew Qn:l
‘LixPs —jeQslljkP.t P,
jk(PgtQut — Qs*Pa?) P;Q.— Q4P :l 39
[(ij’(l-’nQa‘-OnPu‘) jk(PsQu—QsPa)
(ﬁ‘;a)/fk]‘
(8:2)

1
]

I

Il

(8 at)
[ k(@ at)
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In the last expression in Eq. (39), we have introduced
the generalized ray invariants defined in Eg. (13).

Substituting the expression obtained for 9 in Eqs.
(8) and (5), we get the field at plane (1)

Byt J’)__= | (a; 8%) |~ exp[—4 jky (8%; a)=*(Bt; at) by
+ kY (8%; @) jhyt—3 jkyH(Ba) (B1: o) jkyt],  (40)

where a constant factor has been dropped.

Th? exponential term in Eq. (40) is the generating
function for Hermite polynomials in four variables
whose explicit expression is given in the Appendix. The
coefhcients of the expansion of the right-hand side of
Eq. (40) in power series of jky,, Jkys, — jkyit, — jkyai
are, after normalization, 4

Capmmemymy = | (a; 8) | =V (mey sy Ima’ 1)1

XHemmgmimg (0; N),  (41)
where

2%

&)

m:[fﬁ’; a)"}(B; of) (B a)
== (7 e (8; alJ(B‘;a)“:I' :

In the special case where a=g, we have, from

Eq. (21),
0 -1
91:[ ]
1 0

The right-hand side of Eq. (41) reduces to B Bt
where Smimp=1 if m;=m;, and zero otherwise. This
demonstrates the biorthogonality of the sets of functions
By {X) and Em,}(x). If we are interested only in the
propagation of beams through lossless systems, we can
replace 3 by a star, indicating complex conjugate
values, and obtain the usual mode-orthogonality
condition, ’

As an example of application of Eq. (41), let us
evaluate the coupling factor between a beam a in the
fundamental mode and a couxial beam B in the mode m
(m even), in two dimensions. Using Egs. (41) and
(AB), we get

Cagom=2""2(m)'[ (m/2)! ]
X (B*; a*)™2(a; g*)~(mtDR,  (43a)
Using the identity
(B8*;a*)(8; &) = (a; 8*) (a*; B)+(a; a*) (B; 8%), (43b)
and setting
= (aF; B) (B a) = (wa/weF1vs/w,) Y/ 4
T+ tws (1/Ra—1/Rs)?/16,  (43¢)

where w, 5 and R, s denote the beam radii and wave-
front radii of curvature, respectively, we find that the
power coupling is

CapomCapom®=2"mm![ (m/2) T2} (1—x)™"2, (43d)
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ir:. exact agreement with an expression obtained by
Kogelnik [Eq. (23d) of Ref. 1] by use of a direct

Integration technique involving finite hypergeometric
series, '

COUPLING BETWEEN MODES WITH
DIFFERENT AXES

The result given in the last section can be generalized
to the case of modes that have distinct axes. This
is done by considering misaligned mode-generating
systems.

! A= oy ek : seals

Y\ hen an opucal system is misaligned, constant
vectors are to be introduced in the ray equations, as
shown in Eq. (16a). '

The mode-generating matrices M. and My! are
consequently of the form

.'P;Qa: f*er da

‘llii-—_- ~ _!_;
.’I:PB %Pu p.:
L 0 0 1
[k
‘J;Q.a 1Q 0z
Mii=| & ; (45)
—5-Ps 1Py Ps
2
0 0 1

instead of Egs. (35) and (36). Substituting these
expressions in Eqs. (8), (17), and (2), we find that
(9aspa) physically represents the axis of beam a and
(qs,ps) the axis of beam g.

Using the same procedure as before, we evaluate the
coupling factor between the modes generated by N,
and Ms! by first calculating the field at plane (y?)
equivalent to a point source at y. The point charac-
teristic of the sequence of mode-generating systems is
most conveniently obtained by evaluating the ray
matrix Ms!~'M, and using Eqs. (8), (16b), and (17).
This procedure is not applicable, however, to the total
optical length of the optical axis, which must be evalu-
ated directly. After expansion of the field at y! in power
series of jkyi, jkye, — jkyil, — jkya!, the following
expression for the coupling factor is obtained:

Cﬂﬂmlm-;ml'mg'
= | (a; B exp[2(8t; a—B)~ (a; 8 (@; &—B)]
Xexp[—3(@—5; B—7)](mmalmy ' 1)~
X He mymgmyrmp (2NY; N, (46)

34
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where 2 denotes the four-dimensional vector

= (47)

[(B‘; )~ (8 B—a)]
(o; B Mo; B—a) J

The 4X4 matrix N in Eq. (46) is defined in Eq. (42). ¥
represents a ray with components q,, py, such that
g,=py=0 at plane (x). Equation (46) generalizes, for
three dimensions and arbitrary mode numbers, an
expression given before.?

Let us point out, in conclusion, that, besides its
conceptual simplicity, the point-source representation
of modes has the advantage that no integration is
required to obtain the field transformation of modes
and the coupling between modes.

APPENDIX: HERMITE POLYNOMIALS
IN SEVERAL VARIABLES

An explicit expression for Hermite polynomials in
N variables has been obtained by Grad® for the case
where the quadratic form defining them reduces to a
sum of squares. From this result, the general expression
is easily obtained,

De(x; v) =g —vE iy

v/ 1 even

o (A1)
(—v)m=002E 5 odd.

In this expression, x denotes a vector with cartesian
components x;, =1, 2...N, and v a symmetric tensor
of order 2, with components vy, 4, j=1, 2...N. The
vector £ has components £;=3_; vy,

~ Helw(x;v) is consequently defined as a tensor of

order n. The components of e‘™ that have the same
number m; of indices equal to 2 (k=1,2...N) are

1 (my—1) myms
Hemma(x; v) = §™ ¢ — (E -—1—*’1151"'”252"’4' 3

vy ™ -
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equal. We denote these components Hemmy..my(X; ).
This is the notation used in the main text.

Note that a term such as £'v* in Eq. (A1) represents
a tensor of order r+2s. Given r-+2s subscripts, the
corresponding component of &' is a sum of terms,
each a product of 7 £’s and s v's; this sum is extended
over all distinct terms.

In the case of one variable (N=1), x, ¥, and v are
scalars, and we have n=m subscripts, all equal to 1.
The terms in vE*™% are therefore equal. We have only
to count them. We get

[m/2] (__J_ 'jjlsm—b

He(x;v)=Henlx;v)=m! ¥ ———— (A2)
=0 (m—2s5)1s!

=p=I2He_(vix),

where we have defined

tms2] (—4 :__--—31
He, (x}j=m! E . A3
- (m—2s5k

Note, incidentally, that some authors use the poly-
nomials
H,.(x)=2""Hen(2ix). (A4

In two variables (N =2), we have m; indices equal to
1 and my indices equal to 2. The general term has there-
fore the form yy sy, Y o B mimyatbp mey—fta the
summation being carried over the indices «, 8, 7.
Starting, for instance, with v, we see that there are
my ways of choosing the first index of » among the m,
indices 1 available, and m, ways of choosing the second
index among the m, indices 2. The coefficient of »y; is
therefore mpms. Once this choice has been made, there
are m;— 1 indices left in group 1, and m.—1 indices left
in group 2. If we keep proceeding in that way, and
divide the result by the number of identical products
obtained, we find that Hemm,(x;v) assumes the form

1 mg(mg— !}

92251""52"“"2)'1' e

lexp] (= )1y oy w1 @ geyyg T P i Tt fg mim Bt

(AS)

820 2490 ) (y—a—F) =y —a+B) oms—y+a—F)!

In Eq. (AS), [exp] indicates that the sum terminates
when one of the exponents is equal to zero.

For n=my+m, even, the last term in the series is
obtained when y=n/2. This term is

'] (—)’”!?n[ !”12 !j'l].“yﬂ?a-sl‘lim 1—2a

e ; (A6)
Hemmi(0; v) Eﬂ ng—’a!(a—a)!(ﬂii_za)l

where we have set for brevity, 6= (mi—m3)/2. It is
assumed that m2> mg.

In the special case where ma=0, nmy=m, Eq. (A5)
reduces to
Hepo(x; v) =yn™ Hem (1~ 1E1), (AT)

and, for x=0 and m even,
ml(—vn/2)™2
Hemo(0; v) =—————. (a8)
(m/2)!

Expressions for Hemmyman,(X;v) can similarly be
obtained from Eq. (Al).
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