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The effects of periodic axis deformations on propagation in multimode optical fibers with si ngle-mode excitation
are investigated numerically and experimentally. The numerical study, based on ray theory, deals with helical rays
in the presence of sinusoidal axis deformations for various shapes of index profile. The corresponding experimen-
tal observations and results, carried out on tubular modes, confirm the existence of resonance effects between the
helical ray period and the fiber axis deformation. This technique permits the observation of mode-to-mode power
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transfer and provides a sensitive tool to investigate the mode-coupling mechanism in optical fibers.

1. INTRODUCTION

Two of the most important transmission parameters in mul-
timode optical fiber communications, namely, attenuation and
bandwidth, are sensitive to microbends. Microbends induce
mode mixing. As the optical power propagates along the
fiber, leaky modes get coupled and some power is radiated.
Thus mode mixing causes losses. Nevertheless it may have
a favorable effect on bandwidth since it has a tendency to
average the group delays of the various propagating modes,

The effect of microbends is often globally considered (with
statistical models) since it results from the influence of com-
plicated curvature distributions acting on numerous modal-
field configurations. By spectral analysis, microbending can
be viewed as the sum of periodic perturbations. Any field
configuration in the fiber, on the other hand, can be consid-
ered as a sum of modal fields. Thus periodic perturbation of
multimode fibers under single-mode operation provides an
accurate tool for investigating the details of the coupling
mechanism in multimode fibers.

In previous related work, Field! studied the effect of peri-
odic microbending on losses for multimode fibers under
Lambertian excitation. A strong resonance effect (high
losses) was pointed out for square-law profile fibers when the
microbend period equals the ray period 27r. /(2A)1/2, where
re denotes the core radius and A the maximum relative index
difference. These effects are observed with fiber deforma-
tions whose amplitudes are of the order of a few microme-
ters.

In this paper we present a theoretical and experimental
study of the effect of periodic microbends on multimode fiber
propagation with single-mode excitation. The study has been
carried out on fibers having various power-law and undulated
index profiles. Numerical calculations based on ray theory
show that helical ray propagation conditions strongly depend

on the microbend period. Resonant effects give high losses
whenever the microbend period matches the ray period (helix
period). On the other hand, rays whose period does not match
the fiber deformation period remain almost unperturbed as
long as the deformation amplitude remains moderate. Ex-
perimental results on tubular-mode propagation (such modes
are the wave-optics equivalent of helical rays) are found to be
in good agreement with the theory. As predicted, resonance
effects are observed whenever the period of the induced mi-
crobends fits the helical ray period. An experimental ob-
servation of nonadjacent mode coupling in undulated profile
fibers is also presented.

2. NUMERICAL EVALUATION OF HELICAL
RAY TRAJECTORIES IN A FIBER WITH
SINUSOIDAL BENDS

The propagation of light in multimode fibers can usually be
described by ray theory. (We limit ourselves to paraxial ray
theory, which is sufficiently accurate when the fiber-index
changeis A ~ 0.01.) The ray trajectory can be obtained from
the following equations?3:

d%x/dz? = —al(x, v)/dx + C.(2), (1a)
d?y/dz? = —aU(x, y)/dy + C,(2), (1b)

where x = x(z); ¥ = v(2) describes the ray trajectory. Ulx,
y) is related to the index profile n(x, y) according to

Ulx,y) =1 —=nlx, y)/no, (2)

where ng = n(0, 0) is the refractive index on axis; C, (z) and
Cy(z) are the fiber curvatures in the xz and yz planes.
Equations (1) show that the curvature d2x/dz2 or d2y/dz? of
the ray trajectory is the sum of two terms. One is related to
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Fig. 1. a, Ray trajectory in a linear-profile graded-iu'dex fiber _t;.0=5
0.5), subject to sinusoidal axis deformation, with amplltpc_ie Auh— .'t
um in part AB. The ray is launched under such cumh}mns t s_nlt it
would be helical in the absence of mi(‘mk;ends: For clarity, t-he_f iber
representation has been compressed 30 times following the z axis. re
=98 um, p = 4,1, = 5.1 pm, N.A. = 0.25, .h’ Cr{ﬁs-sgcuon P;ojecu_on
of the part of the ray traveling in the undeformed region BC following
immediately the microbend region AB.

the refractive-index gradient dU(x, y)/0x or dU(x, y)/dy, the
other to the fiber axis curvature Cy (2) or Cy(z). _ Frm?l Eaqs.
(1a) and (1b), it is possible to calculate ray trajec%ories for
various fiber-index profiles and various microbendings.
First let us consider helical trajectories in the absence of
mierobends. Helical rays are rays that remain at a constant
distance rn, from the fiber axis. The geometrical paramet;ers
x,y, %,y are related to the azimuthal mode number p by

= kolxy —yx), (3a)

where
% =dx/dz, v = dy/dz, (3b)

and ko = (w/¢)ng, where w = 2uf is the optical angular fre-
quency. The complex amplitude of the field Qf tubular
modes? has the following form in cylindrical coordinates r, ¢,
z:

W,(r, 6, 2) = f(r)cos uo exp(ifz), (4)

where y,,(r, ,2) has no zero in the radial direction 31'1d whos.e
radial dependence f(r) has the appearance of a Gaussian curve
centered at r = ry,. 3 is the propagation constant.

Next, let us assume that the fiber axis is deformed and de--
seribed by an equation x4 = A(z) ina rectangular xz coordi-
nate system with

A(z) = Ap sin(2mwz/A), (5)

where Ag is the deformation amplitude and A is the period.
The corresponding curvature C,(z) is

C.(2) = d2A(2)/d2?,  Cy(2)=0. (6)

Thus
Cy(2) = —(472Ap/A2)sin(272/A). (7)

Once we have selected € (2) and U(x, ¥) in Fqs [.1a) and
(1b), the trajectory can be determined by numar_lcal integra-
tion, using Euler's method. In the abserfce of mmrobenc'lmg,
the ray projection in the xy plane is a C-i.l'C]e‘ When micro-
bends are present, the ray does not remain ata fixed distance
from the axis (Figs. 1aand 1b). To simulate t.ubular-mode
propagation we consider a ray congruence with u and rn
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constants. The initial conditions (xo, Yo, €0, _\?.;) for the var-
ious rays are selected from the following relations:

£0 = Fm COS Y, (8a)
Yo =TI'm Sin7, (8h)
to = Rg sin vy, (Be)
vo =—Rgq cos v, (8d)

where v is an angle that specifies one particular ray of the
congruence and Ry is given by

Ra = "'u!{kﬂr:m (9)

The values of v are taken as uniformly distributed between

0 and 2r. When microbends are applied, the ray projectl(?ns
in the xy plane are off-centered curves, the form of which
depends on initial conditions. The rays no longer propagate
at a constant distance from the fiber axis. In order to char-

acterize the effect of microbending, let us define a thickness
parameter w by
(10)

W = max — "min»

where max and F'min are the maximum and minimum values

Y {",L'rn)

10

a
10 0 x(pm)

=10

16 \J 0 x (F—m)

Fig. 8. Cross-section projection of the ray tr_ajecmr_ies for dlf_telregl,
values of the perturbation-period to ray-pffrmd ratio A/p {;wt 11 0
=510~ pm, k=1, g =4.r, =26 pm, Fp = 6.4 pm, Y = mw/2,and m
=0.1.2,3.4). a Alp=05;b Alp=13¢,Alp =15
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Fig. 3. Trajectory projection broadening parameter w versus per-
turbation-length to resonant-period ratio L/p for two index profiles:
parabolic (¢ = 1,1, = 6.4 um; solid line) and linear with u = 4 and r,
= 26 pm (k = 0.5, rn = 5.1 um; dotted-dashed line), with various
deformation amplitudes Ay a, 1.25 X 10~% um; b, 1.25 X 10~2 pm;
c, 1,20’ X 107 um,

of r, respectively, at the exit of the microbend region, for the
various rays considered. If the applied microbending period
A equals the period p of the helical ray trajectory, the w pa-
rameter reaches its maximum values (Fig. 2). We call this
effect the resonance effect. Figure 3 gives the w variation as
a function of the length L of fiber subjected to microbending.
We can see from these figures that for a parabolic-index-
profile fiber, w: is proportional to the microbend fiber length
L. Fora constant value of Ay X L, w remains a constant.
Triangular-index-profile fibers exhibit quite a different
behavior. If Ay X L is small, w varies linearly with length I,
(Fig. 3), but if A, X L is longer, the curve shows a saturation
effect. T'o explain this difference, one must recall that in
parabolic-index-protile fibers, all the rays have the same pe-
riod p. Thus the ray remains sensitive to further perturba-
tions and the trajectory gets more and more deformed. In the
triangular-index-profile fiber, however, the ray period is
modified by the initial perturbation, and thus the rest of the
ray trajectory is essentially unperturbed because of lack of
synchronism.

3. TUBULAR-MODE LAUNCHING AND
PROPAGATION

Using spatial-filtering techniques, Facq et al.4 have shown
that tubular-mode propagation (for u = 4) is possible in lin-
ear-profile fibers. We have verified that single-mode prop-
agation succeeds as well for other kinds of index profiles and
for various values of the azimuthal orders.
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The tubular-mode radius r,, is the solution of

K2 ko%rm® = dU(rm)/drm, (11)
provided that the potential function
U'lr) = U(r) + (o) (u/kor)? (12)

is minimum (rather than maximum) at r = ry,.

The tubular-mode filter used in the experiments is similar
to the one described in Ref. 5. The field amplitude is syn-
thesized in a binary manner. Whenever the field amplitude
exceeds some fixed value, it is approximated by a constant
value and otherwise by zero. A near plane wave is launched
on a brass plate pierced by 2u holes. This plate is held be-
tween two glass plates of optical quality in order to create 2u
cavities. The change in sign of the cos ud function in Eq. (4)
is achieved by setting the air pressure at alternately low and
atmospheric values in the holes. The resulting air-index
variation provides the 7 phase shift required between rays
traveling through adjacent cavities. After suitable scaling,
the far-field pattern of the filter is launched into the fiber
under test. The far-field pattern is almost identical to that
of the near field behind the filter except for the scale factor,
because Laguerre-Gauss fields are their own Fourier trans-
forms. Figures 4a, 5a, 6a, and 7a show the near-field patterns
at output ends of fibers with various index profiles for various
values of the azimuthal number . All the fiber samples are
10 m long. Except for the last case (Fig. 7a), the tubular
modes propagate without significant mode coupling. In the
fiber with an undulated index profile, fora u = 2 tubular mode
intended to be excited, we observe that the u = 5 tubular mode
gets excited as well.

4. EXPERIMENTAL SETUP FOR
OBSERVATION OF MICROBENDING EFFECT

A. Experimental Details and Procedure )
The experimental apparatus used is the setup described for
single-mode operation in multimode fibers, completed by a
device producing periodic mechanical action on the fiber. A
spatial-filtering technique at the output end of the fiber
provides a quantitative evaluation of the effects of micro-
bending.

In order to induce periodic microbends, the fiber is pressed
between two identical circular plates engraved with equally
spaced parallel grooves (period Ay). Variation of the per-
turbation period A is obtained by giving the fiber axis an angle
@ with respect to the normal to the grooves (Fig. 8); thus

A = Ap/eos a. (13)

Two sets of grooved aluminum plates have been machined
with a saw-toothed profile, with fundamental period A, equal
to 0.5 and 0.7 mm, respectively, The plate diameter is 100
mm. To avoid breaking the fiber, the tooth edges have been
smoothed by light polishing.

A quantitative estimate of the effect of microbending on
tubular-mode propagation is obtained as follows. Inthe ab-
sence of perturbation the tubular-mode power flows through
a limited area of the core: a ring whose mean radius r,, is an
increasing function of the azimuthal order u of the mode.
Under periodic bending of the fiber, the light power is trans-
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ferred to other modes, in particular to higher-order modes,
whose power is located at larger distances from the fiber axis.
To isolate the amount of power coupled to higher-order modes
' > p, we block the launched tubular-mode power by masking
the central area of the output near-field pattern with a cireular
screen of radius r; (Fig. 9). The power Py, flowing through
the remaining annular area r, < r <r, is received on a pho-
todetector. Visual observation and photographic recording
of the near field at the output end of the fiber give comple-

a 2 mentary information about the propagation conditions.
To verily the injection-condition stability, each measure-
ment at a given value A of the induced microbend period is
made aceording to the following procedure:
[ (1) Check for single-mode propagation in the absence of
[ induced microbend (upper grating removed).
(2) Apply the periodic mechanical action by setting in
place the upper grating plate at the proper angle & = arc-
/) s (Ao/A).
bt (3) C}_'leck for smgle—mo‘de propagation reestablishment Fig.9. Circular mask for 4 = 2 tubular-mode blockage. The power
by removing the upper grating. flowing through the area r, < r < r. is collected by a photode-
b tector.
b B. Microbend Amplitude Estimation
If we assume the following ideal features: perfect regularity
of the fiber diameter D, straightness of the fiber axis before
2'0 "0 ; 1'0 2'0 pm. stress, apd fjlal:nes_;s of the ?idged plates, we can deducf.a the a=4X10"9 um.
T ;0 0 pm oL BBy fiber-axis distortion amplitude @ from the laws of linear
Tong Fig.6. a,p = 4tubular modeat the ST e“g. “f?“]:)e:?r °= % .“m' elasticity, where F is the upper grating weight and E is the We note the very small deformation amplitude, which is
Fig.4. a,u=2tubularmodeat the Uu';}?ult ?jniufrgi%&zlf.t.gzi(?rl;it I'm =0.5m. b, Index profile of the corresponcing ] i Young modulus of silica; thus we have nevertheless sufficient to cause severe effects on the tubu-
dratic-index pwmi[;%er' ’”1;1;4:’820}’ i . A= 0N lar-mode propagation. Such an amplitude is much smaller
sponding fiber (re = 26 frm, S, = 5 @ = FA*/(3TEIDY), (14) than the tolerance over fiber diameter and grating-plate
flatness. Therefore the mechanical stress most likely is not
with E-=7 X101 N/m2, F = 1N, A = 0.5mm, | = 100 mm, D evenly distributed, an_d Fhe lfmal distortion amplitude_may
=125 (um; B, (14) gives dep.art from the value @ given in Eq. [,14)" Nev?rtheless? can
be interpreted as a mean value of the distortion amplitude
over the grating length.
5. EXPERIMENTAL RESULTS
- - fiber Tubular-mode launching and periodic microbends have been
a /jjwwww applied to multimode fibers having various refractive-index
profiles: square-law profiles, linear profiles, and various kinds
of undulated profiles. The experiments are made with He-Ne
a a laser light (A = 0.633 um). The fiber-core diameters are 2r.
¢ = 50 pm.
| \
“x A. Parabolic-Index-Profile Fiber
( - \\ A tubular mode of azimuthal order u = 2 has been launched
o/ into a square-law chemical-vapor-deposition fiber and peri-
' odic microbends applied with variable period A. Figures 10
and 11 are sketches of the power P.; versus A for two different
#ibor values of the force F. We note the sharp resonant behavior
of pexy at A = 1,17 mm that is near the theoretical period p of
b helical rays in that square-law fiber: p = 1 mm for all u val-
b ues. In squaretlaw-profile fibers all the propagating modes
T S are thus perturbed. The propagation losses are strong at the
ey A EA N W i Rk i . resonant period.! The photographs in Fig. 12 show the
i R i e Fig. 7. a, Photograph of the exit end ‘I'f - u;d::?,teiiffigfé*:; near-field pattern at the output end of the fiber; in Fig. 12b
Fig.5. a,u =13 tubular mode at the nutpu{._endpfa LO—m-_lungd!‘in— 2110\:]']jgt:ll;;lifrpr:i:;:il:leazthlzn._]:u';:gﬂ:fgg‘:n:)me= 4éﬂﬂm b, Undu- Sl _ . ; b )« I Lhe.resonant case A =1 mm is shown“ "I‘hus the spef:k]e
ear-profile fiber ry, = 10.5 pm. b, Index profile of the corresponding 1altiing index profile of the fiber (r. = 24 um, N.A. =0.11). Fig. 8. Fiber-deformation device. a, Side view; b, top view. pattern spreads on the entire core area, giving the scale of the

fiber (re = 21 pm, NLA. = 0.21).
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Fig 11. AsinFig 10 for a deformation force F = 0.25 N.

fiber core. The small size of the speckle grains and ;.hte:r
spatial distribution over the core show that mi)s:tzbul ai
propagating modes have been coupledb. For the;& -i— e
mode, the resonance, as expected, is observed for

mim.

B. Linear-Index-Profile FiberA . an

For this fiber, whose index profile is sketched in Flg,.r?-lb, th]e
numerical aperture at A= 6_313 nm 011 N.A. :h(:c?}.‘lls legset;s; -
culated ray period for u =415 p = . mm, i

the basic period Ag of the grating (0._5 mm). Nev ertheif‘i E
weak resonance effect is observed with A = 0.79 mm, whi

is at about twice the ray period.
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Undulating Index-Profile Fibers

%he r“ftf;k I}zder test has%he index proﬁ.le shown in Fl'?g. 6. 11‘0;
that fiber, whose numerical aperture 1s N.A =017, au —-u.,.
tubular mode has a period p = 1.05 mm. A plo_t of Pext :ersl,:1 1s
A exhibits a weak resonance at A =098 mm (Fig. 13). Att JFT
period Pext i shifted by less than_S‘%_of its value at nonri‘i)o%
nant periods. Note that the relative increase of Poxt w;s o
at the resonant period for a square-law-profile flbfi': un e:l o
same perturbation conditions. We observe (at the reso

o 1 . 3 .
F 18, 12, ] lf.'id Ullf:l;.,"ul'd[]lﬂlb at the l)ulpllt E]ld of a lﬂ-m-hmg fiber
) - 2%, Q\lll}e('l toa ]'“‘rl()dlc defﬂl =
-min 1?111.,"‘-11. The

sder tubular-mode la'.mching (p=:
l;:atin)n {period A, mean amplitude @) over a 100

g iod i tioin dex-profile fiber isp = 1 mm. F
9 rav period in that quadratic-index-protile f1be i
2 ;:’:ﬁ pa Alp=06,a= 10-2um: b, Afp = 1,@ = 0.1 pm; e, A/p

=(.2
=12.a = 0.25 pm.
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Fig. 13. Amount of power Py coupled to high-order modes and
flowing outside the blocking screen of Fig. 9. Slightly undulating
index-profile fiber (see Fig. 6b) under x = 2 tubular-mode launching,
subject to periodic micrabends of period A and mean amplitude a.

period A = 0.98 mm) that the tubular mode p = 2 is weakly
perturbed. The mode pattern suffers slight distortions but
remains in the vicinity of the u = 2 mode area, showing that
the light power apparently couples to adjacent modes only.
In such undulated-profile fibers, tubular modes appear to be
resistant to mode mixing. This property seems to be a con-
sequence of a trapping effect in the index-profile bumps (Fig.
6b). It is also observed in Fig. 14, which gives, for the same
fiber, the effect of periodic microbends on a g = 4 tubular

mode whose resonance period is A = 0.73 mm (p = 0.69
mm).

D. Strongly Undulating Index-Profile Fibers
With stronglv undulating index-profile fibers, selective power
transfer can occur between nonadjacent tubular modes.
Figure 7a shows an example in which a ¢ = 2 tubular mode is
launched into such a fiber, giving rise to u = 2 and p = 5 tu-
bular-mode propagation. The index profile of the fiber is
givenin Fig. 7b. Figure 15 shows that the associated potential
function U’ (r) given by Eq. (12) exhibits for ¢ = 2 two minima
inthe range 0 <r <r..

If the u = 2 tubular mode is launched in the fiber, the u =
5 tubular mode appears rapidly by mode coupling at radius
. = 16.4 um. The periods of those modes are p = 0.96 mm
foru=2(r, =46um)and p =24 mm foru =5(r, =164
um), respectively. When the fiber is subject to microbends
with A = 0.96 mm, the ¢ = 2 tubular-mode propagation is
perturbed, while the p = 5 tubular mode is not (see Fig,
16).

Fig. 14. Field configurations at the output end of a 10-m-long fiber
under tubular-mode launching (p = 4) subject to a periodic defor-
mation (period A) over a 100-mm length. The u = 4 ray period in that
slightly undulating index profile is p = 0.69 mm. a, A/p = 0.70,7@ =
1 X102 um;b, A/p =106, ~ 15X 10 2um:¢c, A/p =257, @ =06
pm.
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o 10 20 ripm)
Fig. 15. Sketch of the modified potential function U'(r) = [ng —
n(r)l/no + (o) (u/kor)? for g = 2 for the strongly undulating index
profile of Fig. 7h.

Fig. 16. Field configurations at the output end of a 10-m-long fiher
under tubular-mode launching (@ = 2) subject to a periedic defor-
mation (period A) (@ = 0.1 um) over a 100-mm length. The u = 2ray
period in that strongly undulating index profile is p = 0.96 mm: a,
Alp == 1;b,A/p =1.
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CONCLUSION

Periodic microbending, in association with single-mode ex-
citation, is a sensitive tool for the analysis of mode coupling
in multimode fibers. Periodic perturbation amplitudes as
small as 4 X 10~ um cause noticeable effects. It is not nec-
essary here to get into the loss regime in order to observe mode
coupling caused by microbending. Thus the sensitivity is
much greater than that obtained with cruder techniques based
on loss measurements.

Numerical computations based on ray theory and experi-
ment show that strong coupling effects occur for periodic
perturbations whose period equals the spatial period p =
472, 2/(Ap) of a propagating tubular mode. We have also
verified that square-law-profile fibers are highly sensitive to
periodic microbend at the critical period A = 27r./(24)1/2.1
In nonparabolic-index-profile fibers (e.g., undulating profile
fibers involving annular bumps), tubular modes at the cor-
responding radius appear more resistant to mode coupling
than do tubular modes in fibers with smooth-index profiles.
These effects are well understood with the help of the ray
formalism. This formalism is quite convenient to describe
the behavior of multimode fibers under single-mode excita-
tion.

Let us now make a proposal for characterization of a fiber
profile based on the experimental results just reported. When
a nominally quadratic index-profile fiber is operated under
tubular-mode excitation and its axis is periodically bent, the
amount of power taken from the launched mode, together with
the resonance sharpness, might be used as a criterion to decide
how well the fiber’s index profile fits a parabolic law.
Whether this is a practical method remains to be shown.

One can also envisage selective mode extraction from
nonparabolic-profile fibers, provided that the various ray
periods are sufficiently well separated.
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