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Intensity noise of Kerr oscillators
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Absorbing or emitting elements generate noise waves. The main purpose of this paper
is to determine from first principles the spectral density of noise waves relating to
nonlinear elements. This was done by considering the combination of linear elements
(whose noise properties are well understood) and lossless circuits that are nonlinear
because of the Kerr effect. Lossless nonlinear circuits transform noise waves but do not
generate noise. A semiclassical theory shows that noise waves remain at the shot noise
level (for full population inversion) if the optical gain is considered a function of
photon rate (rather than optical intensity). This result, in exact agreement with an
independent theory of spectral-hole burning, is conjectured to be general. Intensity
fluctuations of a Kerr oscillator are squeezed below the shot-noise level for large Kerr
constants.

1. Introduction

in oscillator of any Kind consists essentially of an emitter and an absorber. Oscillation is
" stable when the rate at which photons are emitted is a sublinear function of optical inten-
sity if the absorber is linear, or when the rate at which photons are absorbed is a super-
linear function of optical intensity if the emitter is linear. Under those conditions, noise
can be treated as a small perturbation from the steady state.

In most laser oscillators, the sublinear behaviour of emitters results from a reduction of
the number of atoms in the upper state as intensity grows. We investigate a different kind
of laser oscillator in which both the emitter and the absorber are linear. They are inter-
connected through a lossless nonlinear circuit that ensures stability. The noise properties
of linear elements are well understood. The circuit nonlincarity results from the Kerr
effect, which introduces phase shifts proportional to light intensity variations [1].

The rate R at which photons are absorbed will be shown to be of the form

R=G(R)P+1" S,=nR n=(N+N)/(N;-Ny) (1)

where P denotes the (modulus) square of the voltage across the element at optical
frequency v. The nonlinearity occurs through the dependence of the conduclance G on
rale R. The expression of the (double-sided) spectral density S,, of the noise term r’ in Equation

. where Ny, N denote the atomic populations in the lower and upper state, respectively.
lmphes that r' is at the shot-noise level when either N, = 0 (ideal emitter) or N, =0 (cold
absorber). irrespective of the nonlinearity, i.c. of the dependence of G on R. Because 7 and
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R are both positive for an absorber and both negative for an emitter, the product 7R is
positive. Nonessential noise sources due, e.g., to spontancous recombination in modes

other than the oscillating mode, are not considered.

It is remarkable that Equation 1 also applies to laser diodes affected by spectral-hole

burning [2]. Photonic flows are regulated by external resistances and slow diffusion of

carriers within each band, the two acting in series. We thus conjecture that Equation |
gives the least noise associated with nonlinear elements. Let us emphasize that the
additional noise term r’ would not be at the shot-noise level if G were considered f

depend on P rather than on R [3] (under the N; = 0 or N> = 0 conditions).

For illustration, consider a saturable absorber [4], for which

G(R) = G, — R/P, )
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Figure 1 (a) The nonlinear absorber con-
sists of a 50% beam splitter (B.S.) and two
fibres terminated by mirrors and exhibiting
Kerr constants of opposite signs, in ports 1
(b) and 2. A linear matched absorber is in port
a 3. Port 4 is the useful port (label 4 omitted
——= — for simplicity). a-Waves are entering the
B.S., while b-waves are exiting the B.S.
b (b) Schematic of an element with Nyquist-
=ty & like current source c. (¢) Kerr's oscillator,
with linear emitter (white triangle) and
Linear emitter Nonlinear absorber superlinear absorber (grey triangle). The
latter is the configuration in (a), as viewed
(c) from port 4. The tuned circuit is not shown.
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where G, and P, are positive constants. Equation 1 can be written alternatively in that case
as

R =[G,/(1 4 P/Py)|P+r'/(1+ P/P,) (3)

where the conductance, or loss, is now expressed as a function of P rather than R.
Notice that the spectral density of the noise term in Equation 3 is not equal to that of r’ in
Equation I, but depends on the nonlinearity.
The specific arrangement shown in Fig. la consists of a 50% ideal beam sphitter (BS),
—iwo optical fibres having opposite Kerr constants in ports 1 and 2, and a linear matched
absorber terminating port 3. Port 4 (label 4 suppressed for simplicity) is the useful port.
We will demonstrate the following:

(1) In the steady-state, port 4 behaves as a matched load, i.e. as a pure conductance G,
equal to the characteristic conductance G, of the transmission line.

(2) G is independent of the optical frequency to first order. i.e. the loss is nondispersive.

(3) When the input light intensity varies, G varies but remains a pure conductance.

(4) The output noise wave (b, = b) coincides with the noise wave a; = W generated by
the absorber.

The arrangement in Fig. la was selected in order that conditions (1) to (3) are fulfilled,
while (4) is the basic finding of this paper.

The relationship between circuit and wave formalisms is clarified in Section 2. The
arrangement is treated without noise in Section 3 and a nonlinearity factor k is intro-
duced. It is proved in Section 4 that the noise wave generated by the absorber is unaf-
fected by the lossless nonlinear device. Application to oscillators is made in Section 5.
The conclusion is presented in Section 6.

Upper bars indicating steady-state values are omitted when no confusion with instan-
taneous values may arise. Deviations from steady-statc values are denoted by é. For

—any complex number z, we set z=z"+iz”, and |z? = 2" + 2”2, Re( ) and Im( ) denote
real and imaginary parts. respectively.

2. Circuit and wave formalism
The purpose of this section is to determine wave amplitude variations when the transmis-
sion line is terminated by a (possibly nonlinear) conductance G.

Let V(2hv)"? and I(2hv)"/? denote, respectively, the voltages and currents at frequency
v, the sign convention being shown in Fig. 1b. The absorbed photon rate R, defined as the
ratio of dissipated electromagnetic power and photon energy (hv) is the real part of V' *1.
Optical intensity is defined as P = V' ' V. The steady-state value of ¥ is assumed real.

A complex Nyquist-like noise current ¢ is associated with the conductance G as shown
in Fig. la. From Ohm’s and Kirchhoff’s laws

I=GV+c )
Multiplying both sides of Equation 4 by V™ and taking the real part,
R=Re(VI)=GP+r’, P=|V| r' = Re(V*c) = Vc' (5)
First-order variations of R and P are thus related by
(1 —k)SR/R=06P/P+1'/R k= (R/G)(AG/dR) (6)
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if we consider that G depends on R only. We have introduced in Equation 6 the dimen-
sionless nonlinearity factor k. Since we are looking for a superlinear dependence of the
absorbed rate R on P, x should be positive.

Consider now the wave formalism. Incident and reflected wave amplitudes are denoted
by a and b, as usual. Setting for simplicity the characteristic admittance G, as unity,

V=a+b I=a-b R=|af-pf P=l|atb (7)

If G = 1 in the steady state, the steady-state value of the reflected wave b vanishes, an¢

thus 8b = b. Since V. and thus 7 and a, are real in the steady state. the first-order variations -

of R and P are
6R=a2ba’ 6P =a(26a" + 26b") (8)

Substituting the expressions in Equation & into Equation 6, the relation between §a’ and
§b' reads

kéa' + b =w’ w'=—r'/2a (9)
For a linear absorber (x = 0). Equations 6 and 9 read. respectively,
8R/R=6P/P+r'/R &' =w' (10)

A simple argument provides the spectral density of r’. Assume that all the atoms are in
the ground state, and consider the situation where §P = 0. i.e. the atoms are submitted to
an optical field that cannot vary. (This situation is referred to in quantum mechanics as the
photon number-state). It is then intuitive that the atomic transitions [rom the ground state
to the excited state are independent, since the atoms cannot ‘communicate” with one
another through induced field fluctuations, and the atomic wavefunctions do not over-
lap. Accordingly. the fluctuations of R must be at the shot-noise level in that situation.
Since 0P = 0 this is also the case for r’. and thus

S, =R=S,,=1/4 (11)

This also follows from the well-known expression for Nyquist-like current spectral den-
sities including Planck’s zero-point fluctuation, noting that the relative fluctuations of ¥ ir}
Equation 5 are negligible [3]. Because w' is the real part of a narrow-band process w, w
and the imaginary part w” are independent and both have spectral densities of 1/4 at
T = 0K, but this fact is not needed in the following. If there are on the average V| atoms
in the ground state and N, atoms in the excited state, the more general result in :Equalion 1
applies. (The noise waves w’. w” emitted by the cold linear absorber are sometimes called
‘vacuum fluctuations’. For squeezed vacua, the spectral densities of w’ and w” would no
longer be given by Equation 11, but this situation is not considered here.) _

There is no obvious reason why the emitted noise wave should remain at the shot-noise
level when the element is nonlinear. The purpose of the following sections is to establish
that this is nevertheless the case, provided the conductance is considered a function of the
emitted rate R rather than of the optical intensity P,

3. Nonlinearity factor 3l
Properties (1) to (3) in Section 1 are shown to apply to the configuration in Fig. la. The
noise terms are not considered here.
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The basic property of a 50% ideal beam splitter (BS) is that wave amplitudes are multi-
plied by 1/v/2 upon transmission and i/v2 upon reflection. unimportant phase factors
being omitted. It is easy to verify that the scattering matrix of this 4-port device is sym-
metrical (reciprocal circuit) and unitary (conservative circuit). The a- and h-waves are
entering and leaving the BS, respectively. For the absorber in port 3. the A- and a-waves
introduced in Section 2 are relabelled, respectively, a; and bs.

Thus, referring to Fig. la, the wave b reflected from port 4 is

V2b=ia, + a (12)

ot

Let the round-trip phase shifts introduced by fibres 1 and 2 be denoted ¢, (v) + 60, — /2
and ¢;(v) + 8¢, — 7/2. respectively. The phase shifts @1 and ¢, are taken to be multiples
of 27 at the operating frequency. Accordingly, for a small frequency variation 8,

a = —iby exp [i(do; /dv)sv + i6g ] (13a)
Gy = —ibyexp [i(dey/dv)bv + i6s,) (13b)

Since the absorber on port 3 is linear and matched, a; = 0 and
V2b, = ig 2hy =a (14)

where @ denotes the input wave in port 4.
Collecting Equations 12 to 14, to first order in 8¢,

2b = ia{exp [i(de; /dv)sv + 16¢,] — exp [i(de» /di)u + i65,]}

15
c::a(ﬁeﬁ: —6(3” ( )

assuming that the two fibres have the same delays: d¢, /dv = do, /dr.

Equation 15 shows that the reflected wave 4 vanishes in the steady state. i.e. the system
appears as a matched load as asserted in (1) in Section 1. It is unaffected by a small change

~— of the optical frequency v as asserted in (2). Finally b/a is real. expressing the fact that the

conductance remains real, as asserted in (3).

Consider now the phase shift & experienced by a wave propagating in a fibre exhibiting
the Kerr effect. The phase shift deviates by an amount 8¢ proportional to the input-wave
intensity change:

8lal* = 2[a|*Re(6a/a) (16)
For fibre 1 with input wave b,,
60y = K Re(éby /b)) = k6’ Ja (17)

where k is proportional to the Kerr constant. Indeed, according to Equation 14,
0by /by = da/a, and the steady-state value of the input wave q is real.

Fibre 2 is assumed to exhibit the same Kerr constant as fibre 1, but with opposite sign.
Accordingly, using Equation 14 again,

60y = — Kk Re(6by /by) = — xéa'la (18)
Introducing Equations 17 and 18 to Equation 15,
b=—rba"= kba'+6b'=0 6" =0 (19)
since & 18 real.
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’ CF(?mplan:?on of Equations 19 and 9 without the noise term reveals that the configuration
m Fig. la is equivalent to a nonlinear conductance with i i

. : nonlinearity pa -
defined in Equation 6. 68 Ao guind

4. Noise waves

"I_"he llpear absorber in port 3 generates a noise wave w whose spectral density was given in
l':q_ualu?n L1. This noise wave coincides with the wave as entering the beam splitter, In
spite of transformations due to the beam splitter and prop:agalion through nonligear o‘ ti-
cal ﬁt{res. this wave eventually cxits unaffected from port 4, as Equation 25 will shgw
Equations 12 and 13 are unchanged, while Equation 14 becomes '

V2by =ia+w  V2h, —a+iw (20)

Equation 15 becomes
2b = a(bdy — 66,) + 2w (21)

Equations 17 and 18 now read
00 = Re(6b /b)) = k(ba’ + w")/a (22)
5@2 =—kK Re{ébz/lbj} = — h‘(é—ﬂ' — W”}fﬂ (23)
and thus

b0y — 66y = 2K 6a'/a (24)

coincides with the previous result, Equations 17 and 18.
Finally, from Equations 24 and 21, the relations

ﬁb:—ﬁ.éa!—FW:‘.—ﬁb’-{—ﬁﬁa;:w' SW,=1/4 (25)

demonstrate (4) in Section 1.
f;rhusé ihe conﬁgurution in Fig. la behaves as a matched load in the steady state, The
r;}t eEte .‘—lwave 1(;‘. the sum of a term proportional to the deviation of the input-wave inten-
Sity Irom its steady-state value and a noise wave that coincides wi
_ ‘ s s with the one ¢
the linear absorber in port 3. . Hracte

The result in Equation 25 can be shown to be gen iti i
: eral wh 3
Section | are fulfilled. * e il

5. Intensity noise of a Kerr oscillator

I_t was established in previous sections that the configuration in Fig. la behaves as a super-
l!near absorber (for 5 > 0). To construct an oscillator. it suffices to connect to portp4 a
Imear.negalwe conductance equal to —1 (remembering that the characteristic conduc-
tance is ¥aken as unity, for simplicity). A constant negative conductance can be realized
t?_v applying a constant-voltage drive to a laser diode, The tuned circuit need not be speci-
fied as lqng as only low-frequency intensity noise is considered.

Eguatlon 25 with # = 0 applies to negative linear conductances, but a is now the wave
Iea\.;mg the emitter, while 4 is the wave entering that element. The noise wave entering the
emitter, denoted by v’ is independent of w’ and has the same spectral density {gl,!4}
assuming for simplicity complete population inversion. ‘
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At low baseband frequencies the wave exiting the emitter coincides with the wave enter-
ing the absorber, and conversely, see Fig. lc. Thus

b+ kba' =w' Sui = 1/4 (nonlincar absorber) (26a)
ob' =v' Sy, = 1/4 (linear emitter) (26b)

The real part 8a’ of the fluctuation of the wave a propagating from the emitter to the
absorber is, from Equation 26,
kba' =w'—v' (27)

The (double-sided) spectral density of the fluctuation 8|a|* = 2a8a’ of the photon rate
R = |a|” flowing from the emitter to the absorber is therefore

R'Ssn =2/K? (28)

This result shows that the oscillator output is amplitude-squeezed [3] (i.e. S;z < R) if
k > /2, that is if the Kerr constant is sufficiently large.

6. Conclusion

With a view to establishing a semiclassical theory of noise for nonlinear absorbers or
emitters. we have analysed a configuration consisting of a linear element. whose noise
properties are well understood. connected to a lossiess nonlinear circuit (Kerr medium).
The configuration is equivalent to a pure conductance whose value depends on the input
wave intensity but not on frequency. It is concluded that the noise wave remains at
the shot-noise level, provided the optical gain is considered a function of photon rate
(rather than of optical intensity). According to our formulation, the amplitude noise of
Kerr's oscillators is below shot-noise for sufficiently large Kerr constants,
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