DISPERSION IN OPTICAL FIBRES WITH
STAIRLIKE REFRACTIVE-INDEX PROFILES

Indexing terms: Dispersion (wave), Fibre optics, Optical-
waveguide theory

In multimode circularly symmeltric fibres whose index dis-
tribution is a stairlike approximation of an c]n_plimum profile,
the modal dispersion increases as the number of steps decreases.
For a fibre with An/n = 0-02 and a core radius of 40 um,
numerical calculations based on wave optics show that the
r.m.s. impulse response width at 4 = | gm increases from
0-075 ns/km for tﬁc smooth optimum profile to 0-23 ns/km
for 40 steps of equal arcas. Thus an important conclusion of
the analysis is that one should avoid introducing steps in the
refractive-index profile of fibres for optimum results.

Scalar ray-optics techniques (WKB approximation) are
usually adequate to evaluate the broadening of optical pulses
propagating in highly multimoded glass fibres." However,
there are special cases where these techniques are not ap-
plicable. In fibres made with the vapour-phase deposition
technique, the gas composition is varied in a discrete fashion,
rather than continuously. The resulting refractive-index
profile also varies by steps, particularly when the dopant has
low diffusivity, as for germania, The main purpose of this
letter is to investigate the effects that such steps may have on
pulse broadening. We expect ray (or WKB) techniques to be
inadequate for two reasons, First, the ray technique is
difficult to apply for stepped profiles because some rays reach
discontinuities very near to the critical angle and therefore
travel for a long time in a homogeneous region before being
reflected back toward the axis. Because this region has a low

“— group index compared with. that of the material on axis,

pulses carried by these near-critical rays travel much faster
than axial rays. There are not many rays that exhibit this
behaviour, but & few fast rays considerably increase the r.m.s.
impulse width. Whether such rays are selected or not in the
numerical computation process depends critically on the
details of the ray sampling procedure. Thus the numerical ray
technique may exhibit instabilities. Secondly, according to the
conventional ray technique procedure, partial reflections at
discontinuities are neglected. Only total reflection is con-
sidered. On the contrary, partial reflections are fully accoun-
ted for by the wave-optics technique used in the present work.
A similar problem has been investigated by Clarricoats and
Chan? with the help of Maxwell’s equations. These authors
found that the time of flight of a mode for a profile with five
steps is almost the same as for a smooth profile. However,
they considered profiles that approximate square-law fibres
with low ¥V -number, while we are considering profiles that
approximate optimum profiles with moderately high V-
numbers. Thus their conclusions are not applicable to our
problem.
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Fig. 1 Times of flight (ns}km) of pulses in circularly symmetric

modes as function of radial mode number for various numbers of

We found that for the fibres considered the scalar Helmholtz
equation is sufficiently accurate. This equation has therefore
been used for the sake of simplicity. The numerical technique
presented in this letter is applicable to almost any profile n(r),
continuous or discontinuous. It gives the propagation
constant, time of flight and mode pattern of each of the 1300
modes carried by a typical graded or step-index fibre in 5 min
on an IBM 370 computer. Good agreement is obtained with
analytic expressions for step-index fibres and for square-law
fibres.

When the variations of refractive index in the cross-section
of a fibre are small, the transverse components of the electric
field obey approximately the scalar Helmholtz equation. If
the refractive index has finite discontinuities, a typical field
component, denoted w(x, y), and its first derivatives, dy/dx
and dy/dy, remain continuous.® For a circularly symmetric
fibre, we can assume an exp [i(k. z+ ud— w1)] x y(r) variation
of the field, where the integer u denotes the azimuthal mode
number and k. denotes the axial wavenumber (or propagation
constant). The radial wave w(r) obeys the equation

retd(rdyldr)ldr+[K2(r)— k22— @2 [Pl =0 . (la)

where k(r) = (mw/e) n(r) and n(r) is the refractive index. We
set n(0) = n.

Eqn. la can be written as a pair of Ist-order equations for
w(r) and the auxiliary function K(r):

dyldr=Klr . . . . . . . . . . (1b)

dKldr=rd{r}y . . . & = » & = o« U
where we have set, for brevity,
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as we easily verify by substituting K from eqn. 15 into eqn.
le. Both w(r) and K(r) are continuous functions of r.

To solve eqn. 1 for some given n(r), we use the following
straightforward integration procedure: a value of k. is
selected in the range k(0) to k(a), where a denotes the core
radius. The integration of eqn. 1 proceeds from the initial
condition y

(Kh=o=n . . . . . « + o .

which follows from the fact that, near the axis, A(r) & u?/r?,
and therefore w(r) = r, K(r) = ur" is solution of egns. 15 .
and ¢. The axial wavenumber k. is varied until the condition
wy— 0 as »— oo is reached. Usually, five iterations are
sufficient.

Once the correct values of &; and w(r) have been obtained,
the relative time of flight 7(«, u) defined as the ratio of the
time of flight of a pulse in a mode, with radial number « and
azimuthal number g, to the corresponding time for free waves
on axis, is evaluated by application of the Hellmann-Feynman
theorem. The relative time of flight is (Reference 4, Appendix
A, with a slightly different notation)

(&, 4) = f D) k2(r) w2 (r) rdr
0
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where D(r) = (w/k)(¢k/dw) is a material dispersion para-
meter.* For simplicity, we shall assume that the material is
free of dispersion. Then D(r) = D(0) = 1. Once 7(a, ) has
been obtained for all propagating modes and various optical
wavelengths, the r.m.s. impulse width is evaluated from
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where { ) denotes an average over all propagating modes and
over the normalised spectral width of the source.! For sim-
plicity, the latter is subsequently assumed to be zero.

steps of equal areas

* In eqn. 3, v can be [nterpreted as the axial power de.ui:ly.‘ Eqgn. 3 should
Anfr = 0:015, @ = 40 pm, 1 = I ym 2

not be confused with the expression proposed by Brown#, ore recently, by
Kawakamif, which is restricted to nondispersive media
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Pulses on modes whose . is only slightly larger than the
wavenumber A, in the cladding (near-cutoff modes) are
travelling very fast compared with the other modes, particu-
larly for small 4. We found that these fast modes may in-
crease the r.m.s. impulse width by almost an order of magni-
tude, compared with the value predicted by ray or WKB
methods. However, they carry little power and are likely to
be attenuated by materials adjacent to the fibre. Therefore
we have chosen to ignore their contribution to the r.m.s,
impulse width when the field intensity at » = 1.252 exceeds
0-1%, of the maximum field,

Let us consider first a fibre that has the following (smooth)
refractive-index profile:

1S 1 —=2(Anfn)(r/a)** r<a
n(r)/l- = S
1 —2(An/n) r=a

An/n is the relative difference of refractive index between the
fibre axis and the cladding, The exponent k of eqn. 5 that
minimises the r.m.s, impulse width is & = 1—1-2(An/n).
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Fig. 2 Root-mean-square impulse response width o of fibres
with stairlike profiles that approximate r** as function of number
of steps along radius

The steps have equal areas, the core radius is 40 um and 4 = 1 um. &,,, denotes
the value of x that minimises the r.m.s. impulse width for the smooth profile.

Material dispersion and the effect of the nonzero linewidth of the source are
neglected

Next, let us consider fibres with a stairlike profile that
approximates the smooth profile in eqn. 5. The assumption
(made in the following) that the successive rings in the fibre
cross-section have equal areas seems to model correctly the
fibres that are at present fabricated.” The relative times of
flight of circularly symmetric modes are shown in Fig. 1 as
functions of the radial mode number. for the smooth profile,
for 40 steps and for 20 steps. We have assumed that
Anfn = 0-015, a = 40 um and A = 1 um. The relative time
of flight exhibits oscillations of very large amplitude when
there are 20 steps or fewer.

Fig. 2 gives the variation of the root-mean-square impulse
response width ¢ as a function of the number of steps for a
core radius of 40 um, An/n = 0-02 and 0-005. Two values
of x were considered: the value given earlier that minimises @
for the smooth profile and x = 0-95. This figure shows that
stairlike profiles in multimode fibres with steps of equal areas
may cause large degradation of the transmission capacity, even
if there are as many as 40 steps. The r.m.s. impulse width is
then almost four times larger for the stairlike profile than for
the smooth optimum profile,
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