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Effect of Aberrations

The capability of degenerate optical cavities to transmit faithfully ineident optical signals with arbitrary
wavefronts is limited primarily by geometrical opties aberrations. This eapability is expressed by an
acceptance factor which is caleulated for various types of cavities lacking first-order degeneracy, or
suffering from primary aberrations., It is found that the acceptance factors of spherieally symmetrie
cavities are larger, by orders of magnitude, than the aceeptance factors of eavities possessing only rota-
tional symmetry (such as the well-known confocal cavity). The correction of primary aberrations for
both types of cavities is discussed. Acceptance factors of the order of 107 with finesses of the order of
100 can be obtained. The mechanical accuraey required is, however, a few orders of magnitude higher

than in conventional optical instruments,

I. Introduction

The first-order properties of degenerate optical cavi-
ties, defined as optical systems where all the ray
trajectories are closed curves of equal optical length,
have been discussed in previous papers."* It has also
been pointed out' that the degeneracy condition is met
exactly in a few continuously varying refractive index
media, such as the well-known Maxwell fisheye
medium.? The configurations usually encountered,
which employ homogeneous materials, suffer, however,
from various types of aberrations which limit their
performances.

These limitations must be discussed in relation to
the specific applications considered, which are essen-
tially of two types. In one type of application, offset
paths are selected inside the cavity with the help of
one or two small apertures (or equivalent electrooptic
components, as in the sean laser). As a result of the
cavity degeneracy, the diffraction losses resulting
from the apertures are not affected by moderate path
offsets. The presence of aberrations in the eavity,
however, does increase the diffraction losses, for large
offsets, and modifies the resonant frequencies.

We are mainly concerned in this paper with a second
tvpe of application: the measurement of the fre-
quency spectrum of extended incoherent sources (or of
sources of unknown field distribution). The most
commonly used seanning interferometer is, at the
present time, the plane parallel Fabry-Perot. This is
a mode-degenerate cavity' which offers an unlimited
acceptance area but only a very small acceptance
angle. It was shown by Connes® in 1956 that a con-
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foeal cavity incorporating two spherical mirrors is
generally superior to the plane parallel configuration,
in terms of étendue resolution product. This confoeal
cavity is half-degenerate, in the sense that it takes a
ray two round trips to retrace itz path.' This pecu-
liarity introduces limitations which were discussed be-
fore.*® It is shown in this paper that truly degenerate
cavities possessing spherical symmetry, such as the
concentric cavity proposed by Pole, exhibit étendue
resolution produets which are higher, by orders of
magnitude, than those of confoeal eavities. The
étendue of these cavities can be further increased by
correcting the primary spherical aberration. De-
generate cavities possessing only rotational svmmetry
are of Interest in many applieations; they are also
investigated.

The transmission of aberrated degenerate cavities
is calculated by adding the fields of suceessive passes.
In a first step the phase distortion introduced on the
field of an incident wave is evaluated for one round trip
in the ecavity, according to the laws of geometrical
opties by both analvtical and ray tracing methods.
Because the aberrations are small in the region of in-
terest, the fields of the successive passes form a geo-
metrical series which can be summed up. The rest of
the caleulation consists of integrating the power within
the limits of the cavity apertures. The splitting of
mode frequencies, resulting from edge diffraction at
internal apertures, is neglected. This approximation
is permissible for cavities whose Fresnel's numbers are
much larger than the finesse. When this condition is
not satisfied, one implicitly assumes that the apertures
are loeated between the eavity and the detector, rather
than inside the cavity.

The limitations in the use of degenerate optical
cavities as scanning interferometers are essentially of a
practical nature (accuracy). They are emphasized
in the conclusion.



Il. General Results

The capability of optical systems of transmitting
optical beams of large transverse extent and originating
from various directions in space can be expressed by a
dimensionless acceptance factor N defined by?

= P38, (1)

where P is the power transmitted by the system for an
extended lambertian source of luminance ® and wave-
length A, For a resonant system, the source is required
to be quasimonochromatic; it can be obtained, for
instance, by illuminating a rotating diffusing plate
with a laser.* The funetion N(»), where » is the optical
frequency, is generally broader than the resonance
curve obtained with a coherent beam. A quan‘rm
called ezendue, approximately equal to NAZ% is some-
times used in place of the acceptance factor. The
acceptance factor of systems resonating on a single
mode is unity.

Asis well known, an extended lambertian source can
be represented either by a surface whose elementary
areas do radiate independently with intensity patterns

Beosada, (2)

a being the angle with the normal to the surface, or by a
uniform spectrum of plane waves with power densities

@B, (3)

for an elementary solid angle d2. A Luneburg lens of
large radius? prowdes a conerete way of transforming
the plane waves (within d2) of the plane wave repre-
sentation into the point sources (within de) of the point
source representation. Locally, the transformation
from Eq. (3) to Eq. (2) is based on the sine law, applica-
ble to any aplanatie system.?

Reciprocity laws show that the acceptance factor of n
system does not change when the source and the de-
tector positions are exchanged. In addition, as a result,
of the invariance of the luminance of extended lam-
bertian sources through lossless media,® it is not affected
by the introduction of lossless elements on either side.
It is often of interest to trade the acceptance angle for
the acceptance area or vice versa, the product of these
two quantities (étendue) staying constant. In the
case of a plane parallel Fabry-Perot, for instance, the
acceptance angle can be increased at the expense of the
acceptance area (which is, in principle, unlimited) with
the help of an inverted teleseope.

A. Acceptance Factor of Cavities Free of
Aberration

The acceptance factor of degenerate cavities free of
aberration, but incorporating a number of apertures of
large dimensions, can be readily evaluated. Let us

* Alternately, one may use a coherent monochromatic source
with a narrow radiation pattern, whose axis is offset and rotated
about a fixed point, and take the average of P over all offeets and
rotation angles,

assume that the losses are negligible and that the end
mirrors have equal reflectivity. Since any ray retraces
its own path after a round trip in the cavity, it is
sufficient to determine what rays originating from the
source make a round trip without being intercepted by
a stop.  Following a procedure used in conventional
optical instruments, we calculate the image of each stop
back into the nhgect space. For a linear cavity, how-

ever, stops whose location does not. coincide with the
end mirrors must be considered twice, as they are
crossed twice by the optieal axis in a round trip.  As an
example, let us consider the degenerate cavity shown in
Fig. 1(a), which incorporates two identical confoeal
lenses of focal length f between two plane end mirrors,
and a single coaxial eircular stop, of radius R, adjacent
to one of the two lenses. The two images of this stop
in the objeet space are shown in Fig. 1(b). The
acceptance factor of such a system, consisting of two

coaxial circular apertures of equal radius R, separated
by a distance d = 2f, is known to be’

N = (x3/2N1)[d2 + 2R? — (d* + 4d2R?)}], (dagy
ar
N = R N2, (4b)

if fis much larger than R, Within the present approxi-
mations, the resolution is not affected by stops in the
cavity. This conclusion applies, in partlcul.n‘ to the
Maxwell fisheye cavity deseribed in Ref. 1 which in-
corporates a reflecting sphere of radius R. The
acceptance factor of such a eavity, which is equivalent
to & single aperture of radius R, is obtained by setting
d = 0in Eq. (4a). One obtains

N = =} R/))2 (5)

Equation (5) shows that the acceptance factor may be
as high as 10° at a wavelength of 10 um, for a cavity
radius of 10 em. In Secs. ILB and I1.C, we evaluate
the reduetion in acceptance factor, with respeet to this
optimum value, which results from geometrical opties
aberrations,

B. Methods of Calculation of the Round Trip -
Wave Aberration

Let us choose an arbitrary reference plane in the
eavity, and a point source zg, y in that plane, which
generates a spherical wavefront (see Fig. 2). For
simplicity, one assumes that the refractive index is
unity at that plane. At a large distance from the
source, the difference between the wavefront trans-
formed after a round trip in the system, and the original
spherical wavefront (henceforth called wave differ-
ence) 1s given, in a direction defined by direction
cosines py and ¢, by

AZoguprg) = AQ = AQ + QQ' =W (zo,yo,p1,01) + Top1 + Yods,

(6)
where @ and @' are the feet of the pel]}endiculah
drawn on the output ray from, respectively, the origin
and the point source. The upper bars in l*.,q (6) indi-
cate optical distances, and Wi(a0,p1.q1) denotes the
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Fig. 1. (a) represents a degenerate cavity incorporating one in-
ternal stop. Its two images in the object space, taken along the
folded optical axis (dotted line), are shown in (b).

-

mixed characteristic function of the optical system.
Let us now expand A in series of its arguments:

A= L4 AW 4 AR L A LA L ABD AL ()

L is the round trip path length of the optical axis and
A" is a polynomium of degree m in xo, yo, p1, and g¢i.
A expresses a misalignment of the eavity and A® g
lack of first-order degeneracy. We are mainly con-
cerned with the third- and fifth-order aberration terms,
denoted here A and A“’, respectively. The terms
A® and A® appear only in the case of cavities lacking
rotational symmetry.

There are various ways of caleulating the wave
difference A.  Ray tracing methods give the exact path
length (7 of a ray (defined at the input plane by xq, 4, po,
qo) from the reference plane to the point i, 1 where it
crosses again the reference plane after a round trip.
A 1s related to U by
y A=U— [pley — xo) + quilin — W)l (8)

Let us consider a system with rotational symmetry,
and suppose that the function U(py) at zp = yo = 0 is
known. I'rom Eq. (6), and 2y = —0W /0p; (see Ref. 3),

one easily finds that

L Ol — L I
Alp) = L — hf —PIJ-v p;. (9)
0 me
Equation (9) leads to the following relations:
ABpy) = —UB(m), (9a)
A (p)) = _&{:m{m)_ (9h)
A®(p) = —1U®(p,), (9¢)

which are useful in the ecase of eavities with spherieal
symmetry, because U(po) can be evaluated exactly, i
the input mirror is taken as a reference surface. A de-
tailed analysis shows that for a cavity close to degen-
eracy and m > 2, p; can be replaced by py in the ex-
pression of U, and that Eqgs. (9b) and (9¢) dre un-
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changed (for axial sourees) if the reference surface is
curved, rather than plane. _

Fermat’s principle shows that primary aberrations
can alternately be obtained by evaluating the optical
length of quasiparaxial rays, ie., closed paths _wllr_}e:t?
slope discontinuities are located at the "“'E"'“('t"?"_‘ or
refleeting surfaees, but which assume slopes or positions
given by the paraxial approximation. This method
will be used for cavities possessing rotational sym-
metry.

C. Multipath Systems

Let £ = 1 — ¢ denote the field round trip loss of the
cavity, ¢ being the power transmissivity of both t_.l'w
input and output mirrors. The finesse of the cavity
would be®

g =il — £y V= x™ (10}

if there were no aberration and if 171 = 1.

Under the conditions that both & and N are much
larger than unity, one finds that the intensity variations
resulting from the phase distortions are negligible in the
domain of ay, 4o, p1, g1 of interest. In addition, since a
ray nearly retraces its own path after a round trip, the
total phase distortion is proportional to the n_umi_n_u.r of
round trips in the eavity. Using these approximations,
the total field in the eavity resulting from an elementary
lambertian source of luminance &, located at wxo, Ho
with a normal directed along the z axis and an area do,
is given by a geometrical series

o
Er = B cosade)? Z £n pxp| —jlknA(r, J."fl_-th{b.ll
n=10

= (16 I'rr::iu’.!'a'.}'i{ 1l — £ exp] —jl’.‘_‘sl’_f'u,{_}n,}}:‘.:’:;']]E Tk G111

The acceptance factor, according to Fq. (1), is obtained
by integrating Fy® over all directions pi, g1, with an
elementary solid angle d2 = dpudgi(cosa) " and over
the surface S of the souree. The result is multiplied
by ¢, to obtain the total output power, and divided by
®\*. We get, also using Eq. (10),

e i
N = a2 ol % (12)
L JL'I" ff | + (250/7)sin?(BEA(Zoporpra))

Fig. 2. This figure represents schematically n ring type cavity.

The round trip mixed characteristic is defined ns the optical

length AQ. The difference between the wavefront after a round

trip and the original spherical wavefront originating from A, is,
at infinity, in the direction p,, the optical length AQ’.



This result can alternately be obtained from the plane
wave representation of extended sources.

Equation (12) shows that if there were no apertures
in the eavity to bound the area S and the solid angle &,
N would be nearly independent of the frequency and all
resolution would be lost. If, on the other hand, very
small apertures were introduced to select a mnarrow
peneil, only a small portion of the ineident power
would be transmitted to the detector. It is .gener.ali.y
possible, however, to introduce apertures which ‘ei1m1-
nate the outer rings of interference [corresponding to
arguments of the sine funetion, in Eq. (12), c_lose to
2K, K being a positive integer] without affecting the
central zone (corresponding to K = 0); this is assumed
heneeforth. In the neighborhood of a resonance (k =
ko), we have

sindka = sindk[L + (& — L)] == (b — ko)L/2 + {k/2)A — L},
(13)

and Eq. (12) becomes, for a frequency offset A,

dpydaq,
N =x~ = ———  (14)
A _ﬂ; o ffnl + 5L/ P[(Av/v) + AL -12

where only one order (m) of wave aberration is consid-
cred. The acceptance factor, as given by Eq. (14), is
evaluated in the next sections for simple degenerate
cavities possessing spherical or rotational symmetry.

11l. Spherical Cavities

Spherical cavities are optical systems where the
refractive and reflective surfaces are portions of con-
centric spheres. A typical spherical eavity is repre-
sented in Fig. 3. It incorporates an internal spherical
lens which images a point A of one end mirror into Ifhe
point B of the other end mirror which is aligned Wllt.h
the system center C. It is obvious that, if the imaging
were sharp the cavity would be free of aberration.
This result ean be achieved, in principle, with a Lune-
burg lens.* In the following sections we consider the
effect of first-, third-, and fifth-order aberrations. To
preserve the resolution, a stop is introduced as shown
in Fig. 3, with such a radius that it transmits only the
central zone, as discussed in See. IL. C.

A. Lack of Exact First-Order Degeneracy

Let B denote the radius of the input mirror, taken as
the reference surface. By specifying that any ray
going through the cavity center retraces its own path,
one finds that the cavity ray matrix has the form

o] [4 B[ 1 — B/R B] [n] (15)
m] L¢ Dllze —B/R* 1+ B/R || p

* Such o Luneburg lens cavity! has the remarkable property of
giving a perfect real image of a homogeneous volume.  The image
space coincides with the object space. It is easy, however, if
desired, to separate the image space from the object space with
the help of a plane mirror. There is apparently no other known
optical system possessing such a property.

STOR PLANE

Fig. 3. The primary aberrations of the lens incorporated in this

concentric cavity can be corrected by an aspheric plate (dotted

line) similar to the one used in Schmidt cameras, or, preferably,

with a concentric shell as shown in Fig. 6. The aperture is aimed

at selecting the central zone, in order to preserve the cavity
resolution.

€

with B << B. Notice that A + D = 2, spherical cavi-
ties being always mode-degenerate. They lack first-
order degeneracy, however, if B # 0. Within the
paraxial approximation, the wave aberration is

A® zypy) = (C/2D)ze? — (B/2D)p? 4 (1 — D V)zopr.  (16)

Introducing in Eq. (16) the values of B, €, D given by
Eq. (15), one has, at 2o = 0,

AD(p) = —[(B/2)(1 + B/R)|p* =~ —Bp/2. (A7)

Introducing Eq. (17) in Eq. (14), one finds an accep-
tance factor,

N = (r8/AB)F, Ytan~Y @— 6) + tan~'()], (18)

where the area S of the source is assumed to be much
smaller than 27 R2 and where

3 == (25, L/N\)(Av/v) (19)

is proportional to the relative frequency offset Av/v'

@ is an aperture factor, defined by
@ = (BFo/N)pmax’y (20)

where puw is the maximum allowed angle, as defined
by the aperture radius. The frequency dependance of
N, normalized to unity for § = 0, is plotted in Tig. 4,
for @ = 1 (eurve b). This is a symmetrical but offset
function of 6. For @ = 1, the resolution is about 159
lower than for small apertures, and the acceptance
factor is half the value reached for large apertures.

The acceptance factor of a plane parallel Fabry-
Perot, of area S, considered as a spherical cavity in the
limit where B = =, is obtained by setting B = 2d in
Eq. (18), d being the mirror spacing. Equation (18)
becomes, for @ = 1, at the peak of the response eurve
(6 = 0.5),

N = LAS(S/Ad)F . (21)
This expression is also readily obtained from the plane

wave representation of lambertian sources.
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Let us make the following numerical example:
Fo= 100, A = 10 um, S = 10 em?, and d = 1 em. One
finds, from Eq. (21), N = 148. Fkrom Eq. (20), the
aceeptance angle is po.. = 2.2 X 1072

B. Concentric Cavity

Let us now assume that the condition for first-order
degeneracy is fulfilled (B = 0), and calculate the effect
of spherical aberration on a degenerate cavity incorpo-
rating a spherical lens of refractive index »n and radius
7 in a coneentrie reflecting sphere of radius B. The
round trip path length is easilv obtained from the
Bouguer formula.’  Taking the input mirror as a
reference surface as before, we have

LY A paiR2\ }
Ulpe) /4R = (1 — jJnEJ# + n ;B(l o ) R) = £(] == }_’oﬁ)

nlrt R r?

N _E - P R P!
(1 R+”)‘|’) ) *.?I:I_'_r(n_]):l_.‘-;

e

Jndl |
A _— 7(2) T(4)
- Xl:l+r'(?" l)]-i'...—-”.-t-l + L

+ ... )/4R, (22)

where pg >~ py = p is the input ray direction cosine.

The condition for first-order imaging of opposite
points of the reflecting sphere [[72 = 0] is, from
Faq. (22),

r= [(n— 1)/nlk, (23)

and the third-order wave aberration for a round trip is,
from Eqs. (9b), (22), and (23),

A = —(p/D)[n/(n — 1)}R. (24)

Ray tracing* shows that higher order terms do not
exceed 7% of A™ when p < 0.1.  The integration over
prand ¢ in Eq. (14) can be taken from —«= to +w
with a negligible error. Let us take the source as
coincident with the input half sphere of area 2xR2
Substituting A® from Eq. (24) into Eq. (14), one ob-
tains an acceptance factor,

o N = r2-4R/AEE5 Y — DntH(5), (25a)

where
HGy= [(1 + 8~ — 5(1 4 32)—% (25b)

6 is a quantity proportional to the frequency offset,
which was defined before in Iq. (19). The function
H(8) is plotted in Fig. 4 (eurve ¢). One notices that
H(5) decreases only slowly when the source frequency is
inereased above the resonant frequency (8 > 0). The
reason is that for frequencies higher than the resonant
frequency the central zone simply transforms into a
ring of increasing diameter. A better resolution is
obtained, as shown by Hercher,* with apertures smaller
than the one presently considered (which is only aimed
at separating the central zone from the outer rings).
Equation (25a) shows that the aceeptance factor of the

*The ray tracing programs used in the present work are
written in superbasic with double precision (16 decimals),
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Fig. 4. (a) Normalized transmission vs frequency curves of

aberrationless cavities (b), cavities suffering from lack of first-

order degeneracy and (e), cavities suffering from spherical
aberration,

cavity increases with its dimensions as (B/\)%. N
also increases with the refractive index n.

For n = 4 (germanium), § = 100, R = 10 c¢m, and
A = 10 pm, the maximum aceeptance factor, as given
by Eqs. (25a) and (25b),is N = 3.8 X 10°

One way of correcting the spherical aberration of the
internal lens consists of introducing an aspherical plate
at the cavity center as shown by a dotted line in Fig. 3.
This plate, similar to the one used in the Schmidt
camersa, would free the cavity from primary aberrations,
but the aceeptance area would be restrieted by higher
order aberrations. A different method of correction is
discussed in See. IT1.C.

C. Corrected Concentric Cavity

The possibility of correcting the spherieal aberration
of a spherical lens with the help of a concentric spherical
shell of refractive index »’ and radius r* > » is investi-
gated in in this section. The path length U(p) be-
comes'!

U ' 22\ 4 ] 2\ }
__-E‘J ~ (1 — lell + n! r 1-— P e r 1 — r
4R R A g R r'?

r piR? i r pER?
] 55 =l — -0
“Hil R ( n"‘rz) ¥ s : n'tr?




Numerieal ealeulations show that the seeond and third
terms in the expansion of Eq. (26) can be made equal to
zero simultaneously, if n’ > n.  The primary spherical
aberration can consequently be made to vanish. No-
tice that, when n' > #, the core has a convergent effect
which overcomes the divergent effect due to the shell.
The fifth-order spherieal aberration, reaches a4 minimum
as n varies, which is relatively high when »’ is small,
but decreases to small values for large values of the
refractive index. At visible light wavelengths, where
the refractive indices of glasses are in the 1.45-1.65
range, the improvement resulting from the introduction
of a shell, in ecomparison with the uneorrected cavity, is
modest. The minimum value of A® is found to be
62 Rp®, for o’ = 1.6. A substantial improvement: can
be obtained, however, at ir wavelengths,* where the
refractive indices of available materials can be as high
as 4 (germanium). When the shell is made of ger-
manium (n" = 4), the fifth-order aberration reaches a
minimum A® = 0.8RKp°, for & core refractive index
n=23.7. Torn = 3.3 (gallium arsenide) the aberration
i= not substantially larger. It was verified, by ecaleu-
lating [7(p) as a funetion of p, that aberrations of order
higher than the fifth are negligible in the range of A of
interest. The maximum value of p for n = 3.5 is
found to be 0.43, corresponding to an angle of 25°.
'or larger angles the ray still intersects the shell, but it
misses the core. Figm'(' 5 gi'«.’(-:ra. for #l'= 4, the re-
quired radit », »* as funetions of n. The aceceptance
factor is obtained by substituting the expression of the
leading term A®, obtained from Eqgs. (9¢) and (26), in
Eq. (14) and integrating with the same limits as in
See. ITLB.T  One obtains at the resonant frequency
5 =20)

N =(R A]:I;‘Z_'nﬁém| (27)

where

: Rif1 O\ ke
a =Y 2xs104 2:'||:I +— ( - 1) + =
rrat\ints i
el -
e S 3 (2%)
nt on'

¢ /R and ¢'/R being oblained from the solutions of
A® = AW =, 9is plotted in Fig. 5 as a function
of n.

Taking the same numerieal values as for the uncor-
reeted eavity (B = 10em, N\ = 10 um, F = 100, n = 4)
and n' = 3.4 one obtains N = 19 X 10° which shows
that an improvement by a factor of 5.5 results from the
addition of a shell to the lens,

A modifieation of practical interest can be applied to
any degenerate eavity eonsisting of concentrie spheres.
[t consizts of limiting the inner lens by a corner cube

* T, di Francia [J. Appl. Phys. 32, 2051 (1961)] proposed a
similar lens for the imaging of an ohject located at infinity.

T One uses the equality f
0

e

.l‘hl.-"’fl + uf) = =/3.

having its top at the eavity center, as shown in Ilig. 6.
This new configuration still meets the condition for
degeneracy; it requires only one eighth of the volume
of the refractive medium used in the full cavity. Fig-
ure 6 represents a specific configuration with a shell in
germanium and a core in gallium arsenide. The re-
fractive index of the core is high enough to provide total
reflection on the corner cube faces.  We also notice that
antireflective coating is needed only outside the lens,
the Fresnel reflection at the Ge GaAs interface being
less than 19;. The finesse of this cavity would pre-
sumably be limited by the bulk losses in germanium.
In some applieations, the losses ean be overcome with
the help of active media (CO; laser, for instance). In
[ig. 7, a comparison is made of the refractive index
laws for spherical degenerate eavities incorporating
Luneburg lenses, spherical lenses, or optimum core and
shell lenses.

IV. Cavities with Rotational Symmetry

We are considering in this chapter degenerate cavi-
ties which possess only optical rotational symmetry.
In contrast to the ease of spherical cavities, perfect
imaging of the end mirrors is nof a sufficient condition
for low eavity aberrations. All six coefficients in the
expansion of A® must be considered, rather than the
five aberration coefficients given in most textbooks
(which refer to the imaging of a single plane).

In See.IV.A, we caleulate the aceeptance factor of
confocal cavities on the basis of an expression of the
wave aberration obtained by Connes.®

e ~20
n'=4

(SHELL] 41%) ;
et T

ost 0

i
r
| !
1 2

n (CORE)

Fig. 5. When a high refractive index shell is added to the in-
ternal lens of the cavity shown in Fig. 3, the primary spherical
aberration can be corrected, The required core and shell radii
(r and #', respectively) are given in this figure as functions of the
core refractive index (n), the shell refractive index being constant
and equal to 4 (germanium). 9 is proportional to the cavity
aceeptance factor, which is determined by the secondary spheri-
eal aberration.  The mirror radius R is taken as unity.
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Fig. 6. This figure represents a corrected degenerate cavity of

woiterest at ir wavelengths, based ou the results of Fig. 5. De-

generacy is preserved when the internal lens is shaped as a
corner cube.

A. Confocal Cavity

This eavity ineorporates two spherieal mirrors of
radii R separated by an equal distance R.* Let us
caleulate the optical length of a quasiparaxial ray
(defined in See. IL.B) which interseets the end mirrors
at radil py and py, respectively, in meridional planes in-
cluding an angle 8. One has
A= 2R+ pt+ p? + 2pips c0s0)}

+ 2R 4 o + p? — 2opecosd)l,  (29)
where
= (R* — ;) + (R — p2) — R

Assuming that Py, P, << R, one obtains

L4 AN = 4R — 5252 cos29/ 5. (30)

YThis result shows that, with the present choice of

variables, a confocal cavity suffers only from astigma-
tism without field curvature.®

Examples of the error (in 97) resulting from higher
order terms (m > 6) for relatively large values of py and
po, obtained by ray tracing, are given in Table 1.

Table I shows that the third-order approximation 1q.
(30) provides a sufficient aceurncy for the present
problem.

Let us evaluate the aceeptance factor of the eonfoeal
cavity by assuming that the stops, loeated at the end
mirrors, have radii such that the wave aberration does
not exceed A\/F. Because the cavity is only half-
degenerate, incident beams have to be restricted to half
the input aperture area and half the accepted solid
angle. These eonsiderations lead to

N =~ (R/\)F L (31)
For £ = 1 m, A\ = 10 pum, F = 100, one obtains N ~
1000.
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B. Two-Lens Cavity

Let us consider now the two-lens degenerate eavity
shown before in Fig. 1 and redrawn in Fig. 8 which
incorporates two confocal lenses of equal focal length f
between two plane end mirrors.

The wave aberration can be obtained by calculating
the path length of a quasiparaxial ray defined by radii
pand ps at the input plane and at the ecentral plane,
respectively, and the angle # between the two corre-
sponding meridional planes. Let us first assume that
the lenses can be replaced by thin planes introduecing
at a distance p from the axis an optical delay

Vo= —p¥/2, (32)

/ being the focal length of the lenses.  V is taken as in-
dependent of the incidence angle, to satisfy the general
laws of optics.  Equation (32) is a valid approximation
for lenses of large refractive indices and radii, as we
shall see in more detail later.  With this approximation,
one easily finds that

Table I. Error on Aberration

pr/ Rt pa/ R a 100[(a — L)/at — 1]
001 0.051 78° <0.07
0.1 0.1 0 -3.5
0.1 0.11 26° —4.6
- (d]

(el
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Fig. 7. This figure summarizes the various radial refractive

index laws considered in Ref. 1 and in the present paper; (a)

corresponds to the Maxwell fisheye medium n(r) = 2(1 4+ #2)-1,

(b) and (e) correspond to Luneburg lenses caleulated for the case

where the object and the image occupy symmetrical positions,

(d) is relative to a typical Pole’s cavity (Fig. 3), and (e) is rela-
tive to the corrected version represented in Fig. 6.



Fig. 8. Two-lens eavity incorporating stops at the input plane

and at the central plane. For lenses with high refractive indices,

primary aberrations can be corrected, in principle, with the
help of two aspherical plates.

L4 A% = & — (f/2)(m* /1% 4+ w4 (33)

Let us substitute now Eq. (33) into Eq. (14), the
limits of integration being defined by two apertures of
equal radius p,, at the input plane and at the eentral
plane.  One obtains*

N = («3/4)(f/N)Fo M tan "2 @— &) + tan~UD)],  (34)

where & was defined before [Eq. (19)], and the aperture
factor is

T = ;}npﬂ“;")\f", (35)

As an example, let us assume that X = 10 pm, f =
0.5 m, and F = 100. @ = 1 corresponds to aperture
radii p, = 1.05 em, and the maximum wave aberration
is, in that case, equal to A/F. The aceeplance factor,
at the peak of the response curve (8 = 0.5), is from
Eq. (34), N = 3675.

The form of the aberration Eq. (33) suggests that all
third-order aberrations ean be corrected by using
aspherieal plates at the input plane (to correct for the
term — p*/2f%) and at the central plane (to correct fgr
the term — p?/2f%). Equation (33), however, is valid
only for high refractive index lenses.  To avoid lengthy
:;.11;i.1).-‘ticnl caleulations, ray tracing was used to evaluate
the wave aberration for the case of symmetrical H-mm
thick germanium lenses (n = 4) and glass lenses (n =
1.5). The focal lengths f of the two lenses are taken as
unity (1 m). The primary aberration coefficients,
obtained by this method, are given in Table II, to-
gether with the result of Eq. (33). The terms p*p%
and p.%ps* (distortion and coma) are always absent, as
a result of the symmetry. Table 1T shows that the
use of asphericities at the input mirror and at the cen-
tral plane would not cancel exactly all third-order
aberrations, but would, however, bring a substantial
improvement in the case of germanium lenses.

The aceeptance factors of ecavities with nonplanar

*To simplify the integration, the square limit in the p® pe®
plane is replaced by a circular limit of radius po’.  Thisintroduces
only a small error.

path shown in Fig. 3 of Ref. 1 are four times larger, for
the same free spectral range, because two lenses only
are encountered in a round trip, instead of four. The
aberration ferms are otherwise the same.

V. Cavities Lacking Rotational Symmetry

Cavities lacking rotational symmetry are strongly
affected by aberrations, sinee the primary aberrations
are, in that ease, of second order. Ray tracing was
used to evaluate the wave aberration of the internal
mirror eavity, discussed in Ref. 1, Sec. I1L.B, which
incorporates two internal spherical mirrors of equal
radius R and two plane end mirrors.* This cavity
clearly lacks rotational symmetry. The dimensions of
this cavity were given in Eq. (12) of Ref. 1. The
present results are given for incidence angles on the
spherical mirrors equal to 45°.  Ray tracing shows that
the wave aberration dependance on ap and y, is

A (rg,000,0,0) = —0.5r* R~ 4 '1,”‘:"-‘?_!- (36}

A rough estimate of the acceptance factor ean be
derived from Eq. (36):

N = (R/\)Hg,%. (37)

IfR =1m, A = 10 gm, and 5, = 100, one finds that
N ~ 5. This type of cavity, although attractive in
some other respeets, is consequently by far inferior to
all the other cavities discussed before in this paper.

VI. Conclusions

The aceeptance factor of degenerate optical cavities
is primarily limited by geometrical optics aberrations.
It was given for a number of cavities of interest, in-
cluding the well-known plane parallel Fabry-Perot and
the confoeal eavity. Typieal values obtained for the
acceptance factors of these cavities are listed in Table
II1. The round trip path lengths of the eavities are,
respectively, 0.4 m and 4 m for the cavities with
spherical and rotational symmetries (it would be im-
practical to make large spherical lenses). The values
given for the resolution are based on the assumption of ¥
no losses or defects in the eavities, and mirror reflec-
tivities of 979%.

Table Il. Primary Aberration Coefficients

n A4 (ps? = pipa c0SH)

< —0.5 p* —0.D po* [Eq. 33)]

100 —0.505 py* —0.505 pa* —0.01 py* —0.01 pi*p;*
4 —0.66 p* —0.66 pot —0.138 ps* —0.32 py?p?
1.5 —1.66 pi* —1.66 po* —3.32 pm* —2.33 pr%e2*

* Experiments made at A = 0.6328 um with £ = 3 m con-
firmed that this cavity is degenerate, to first order.

May 1970 / Vol. 9, No. 5 / APPLIED OPTICS 1139

Table Ill. Typical Values Obtained for Cavity Acceptance Factors

Typical aceeptance Typical
factor >~ Gtendue /x* resolution
Name of the eavity (as used in the text) N LF/x Cormments
Single mode cavity (See. 11) 1 45107 Used with coherent sources. Requires mode
‘ . matching
Internal mirror cavity (Sec. V) d 4107 Does  not, 'i|||-.ur|mr:lle lenses.  Lacks rota-

tional symmetry

Plane puzmllel l"s:bry-l’ erot.  1-em spacing, 148 109 Widely used because of its simplicitv, Nar-
& I(][-rqn area {bef. III.:_U row aecceptance angle

‘onfocal eavity (Sec. IV.A) 1000 43 1y Does not incorporate lenses,  Alignment not
i o . : ' eritieal

wo-lens cavity (See. IV.B) 3675 4107 Flexible arrangement. Primary aberrations

: ! : _ can be corrected to some extent
Concentrie cavity {Sec. 1I1.B) S8 108 23 106 Spherieal symmetry
Corrected concentrie cavity (See. 11L.C) 19108 2x10° Spherical symmetry.  Corrected for primary
vy ) . _ aberrations (ir wavelengths)
Maxwell fisheye cavity (Sec. 11.A) Loe AX 100 Spherical symmetry.  Aberration free. Not
feasible at the present time
Table 111 clearly shows that the acceptance factor of References

cavities with spherical symmetry, whether or not they
are corrected, is larger, by orders of magnitude, than
the acceptance factor of cavities which possess only
rotational symmetry. The lenses required in spherieal
cavities, however, are bulky, and consequently lossy,
partieularly at ir wavelengths. It may also be difficult
to make full use of the wide acceptance angle of these
cavities, i.e., to match their acceptance angle to the
radiation angle of commonly encountered sources.
which usually do not extend over the whole half-space.

« [he main difficulty in the fabrication of degenerate

optical eavities is that every ray keeps passing through
cach optieal element at the same point a large number
of times, roughly equal to the finesse F,. As a conse-
quence, the phase errors (lense defects as well as aberra-
tions) add up, and create large total phase distortions.
The future use of degenerate optical cavities conse-
quently rests on improvements in lens polishing,
alignment, and over-all mechanical aecuracy, which
have to be better by orders of magnitude than the
ones required for conventional optical instruments.

The author expresses his thanks to D. C. Hogg and
T. 8. Chu for useful discussions. The numerical calcu-
lations relative to the symmetrical Luneburg lenses
were made by C. L. Beattie.
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