. Reprinted from APPLIED OPTICS, Vol. 8, page 189, January 1969
Copyright 1969 by the Optical Society of America and reprinted by permission of the copyright owner

Degenerate Optical Cavities

J. A. Arnaud

An opfical cavity is degenerate when an arbitrary ray retraces its own path after a single round trip. The
condition for degeneracy is given for ring type cavities incorporating internal lenses, using geometrical op-
tics methods.  The simplest linear configurations require a spherical mirror or a corner cube, a thin lens,

and a plane mirror,

Planar rings with four plane mirrors require at least three thin foeusing elements.

A nonplanar ring is discussed which requires only two thin lenses. The alignment of degenerate cavities is,
in general, as eritical as the alignment of plane Fabry-Perot.

-

l. Introduction

From a geometrical opties point of view, an optical
cavity is degenerate when an arbitrary ray retraces its
own path after asingle round trip.  From this property,
it is easy to show that any field configuration reproduces
itself after a round trip within the approximation of the
scalar Fresnel diffraction theory.

These optical cavities have applications in aetive
imaging,' spatial seanning of lasers,? and regenerative
amplification of distorted optical signals.*  Since there
is no need for mode matching with an external signal as
in ordinary ecavities, they are also useful as seanning
interferometers.

A linear degenerate cavity comprised of two identieal
spherical mirrors and a confoeal internal lens was
originally proposed by Pole.? This cavity was subse-
quently generalized for end mirrors of unequal curva-
tures by Hardy.! An equivalent structure comprised
of two identieal confoeal lenses and plane end mirrors
has also been proposed.*

di Francia® pointed out that cavities, in which any
ray retraces its path after more than one round trip,
can also be considered degenerate if an off-axis ray is
taken as the optical axis.  From this point of view, the
classical confoeal eavity® is degenerate for far off-axis
rays. The operation of such cavities, however, is
strongly affected by aberrations.

With the help of the well-known theory of open
resonators, based on gaussian modes’ or geometrical
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* The present study was motivated by a proposal by R. Kompf-
ner to amplify narrow band distorted optical signals before detec-
tion to enhance optical receiver sensitivities. This scheme is dis-
cussed in Ref, 15.

optics,®* we will point out the general features of ring
type and linear type degenerate cavities. The results
are subsequently applied to partieular configurations in
a search for degenerate cavities which are either simpler
than those proposed before or more flexible in the ful-
fillment of the degeneracy condition. For elarity, two
classes of degenerate cavities are distinguished: (1)
plane rings with an even number of plane mirrors;
and (2) nonplanar rings which have the peculiarity of
introduecing an image rotation equal to = about the
optical axis. Examples of aberration-free degenerate
cavities are also given.

Il. General Properties of Degenerate Cavities

We restrict ourself to cavities that can be analyzed
by considering paraxial rays lying in two mutually
perpendicular meridional planes,  The diseussion which
follows applies to either one of these two planes. We
also assume that the reflecting mirrors are plane. No
loss of generality resulis from this assumption, since a
spherical mirror of radius R under normal incidence is
equivalent to a plane mirror and a lens of foeal length
J = Rinfront of it (notice that the lens is erossed twice
by the optical axis in a round trip). More generally, a
curved mirror is equivalent to a plane mirror followed
by an astigmatic lens,* if the incidence plune coincides
with a prineipal plane of the mirror surface.

A. Ring Type Degenerate Cavities

Let @1, & define, respectively, the position and slope
of a ray at an arbitrary plane perpendicular to the
optical axis, and xy, % the position and slope that this
ray assumes at the same plane after a round trip.

* By astigmatic lens, we understand a lens which has different
focal lengths in two perpendicular meridional planes, and by stig-
matic lens a lens which has a eylindrieal symmetry.
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Within the first order approximation, these quantities
are linearly related:

[2]=1% 212 g

A, B, €, D in Eq. (1) are the elements of the round trip
ray matrix. They satisfy the relation AD — BC = 1.

From Eq. (1), it is elear that any ray retraces its path
(xy = xo and % = = for any value of x and &) when,
and only when, the ray matrixis unity. This condition
is expressed by

Bim =0,
A=D=1 (@)

The condition B = 0 implies that the reference plane is
imaged into itself; A = 1, that the magnification is
unity; € = 0, that the transformation is telescopic.
The sealar law of imaging for Fresnel diffraction’ shows
that any transverse field configuration is exactly re-
produced after o round trip exeept for a constant phase
shift equal to 0 (mod 2x) at the resonance frequency.

Upon examination of Eqgs. (1) and (2), the following
conelusions are reached: (1) a sufficient condition for
degeneracy is that two rays which do not cross the
optical axis at the same point retrace their own path
after a round trip; and (2) three parameters (for in-
stance the separations between four lenses on a ring of
fixed total length) are required to fulfill the degeneracy
condition.

B. Linear Degenerate Cavities

Let us consider now the special ease of linear cavitics
2, s z ab
limited by two plane end mirrors 37y, M, and call I;" d]

the ray matrix from A, to M, The round trip ray
matrix, from A, to M, and back to My, is

[‘-l. B] = I:rr. r,:“:d h:| . I:m.f + be  2ab ] )
¢ D c d]le a 2o ad + be
From Eq. (2) and the relation ad — be = 1, we see that
a linear cavity is degenerate when, and only when, b =
¢ = 0. The condition b = 0 indicates that one end
mirror is imaged into the other. This conclusion ap-
plies also, of eourse, to the ease of spherical end mirrors.
The condition ¢ = 0 indicates that the transformation
from M, to M, is telescopic. The magnification,
however, may not be unity. As a consequence, only
two free parameters are necessary to fulfill the de-
generacy condition.

In See. 11. C we show that the degenerate cavities
belong to a broader class of optical cavities which are
mode degenerale.

C. Resonance Frequency Based
on Mode Theoty

From the gaussian mode theory, the resonance fre-
quencies of u ring type cavity which has a round trip
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ray matrix spur equal to A + D in any meridional
plane and a round trip path length L are given by *

A
= LA (4)

L — (2p + 1 4 1) cos™!

where [ is the free propagation constant, p, [ are, respec-
tively, the radial and azimuthal mode numbers, and K
is an integer. TFor a linear cavity, from Eq. (3), the
argument of cos ' in Eq. (4) becomes ad + be. ILiqua-
tion (4) shows that the resonance frequencies depend
neither on p nor on [ when A + D = 2 (or be = 0 for
linear configurations). These cavities, however, are
not generally degenerate beeause no mode of finite
extend exists, unless A = D =1, B = ¢ = 0, in which
case any field configuration can be viewed as a mode.
A condition equivalent to A 4 D = 2 is that any ray
going through a particular point on the optical axis,
which may be called the eenter of the eavity, retraces its
path after a round trip. This is elearly the case for any
eavity having concentric spherical refracting and re-
flecting surfaces, and for plane parallel Fabry-Perot.

D. Alignment of Degenerate Cavities

All the eavities satisfying the condition A + D = 2
have the common property of requiring accurate align-
ments of their optical elements. The reason is that no
optical axis (defined as a ray which retraces its own
path) exists when the eavity is misaligned. This is
readily seen by noting that the self-consisteney ray
cquations,

z = Ax + B 4+ 3§,

=04+ D&+ A, (h)
(where 8 and y represent misalignments at the reference
plane), have no solution when (4 — 1) (D — 1) — BC
= 0. This condition is equivalent to 4 + D = 2.
How eritical the alignment really is depends on the
excitation field and the finesse of the cavity.

E. Half-degenerate Cavities

1t is also of interest to discuss the case in which 4 =
D= —1B=C=0(ora = d = 0 for linear config-
urations). Equation (4) shows that the even modes (/
even) and the odd modes ({ odd) resonate at frequencies
separated by half the free spectral range for any value
of p.
We readily see that the self-consistency equation for
the complex beam parameter ¢ (Ref. 7),
g = (A¢ + B)/(Cq + D), ()
is satisfied in that ease for any value of ¢. In other
words, any incident on-axis gaussian beam is matched

* The on-uxis field of a ray pencil, limited to a ray #(2), is pro-
portional to z(z)~%. This expression, with 2(z) complex, is also
applicable to fundamental gaussian beams (p = 1 = 0). The
on-uxis phase shift experienced by such a beam through an op-
tical system described by 1d. (1) is, consequently, kL + phase
of (x1/75) = kL + phase of (4 + B/y), where ¢ = x/dy is the
input complex beam parameter. For the case of a resonating
cavity, Eq. (4) is obtained by substituting for ¢ the solution of
Fq. (6) (matched beam). The case of linear cavities was dis-
cussed in Ref, 7,

to these cavities.* An arbitrary field is not faithfully
transmitted, however, since the odd modes are dropped
when the eavity is tuned at an even mode frequency.

Since the round trip ray matrix is equal to — [1], the
ray matrix for two round trips is unity. Aceordingly,
this type of cavity is degenerate if an arbitrary off-axis
ray (which makes two round trips before closing on it-
self) is taken as the optieal axis. This conelusion ap-
plies only if the coupling between the beams assoeiated
with the two turns of the optical axis is negligible. The
alignment of such degenerate cavities is not eritical but
the field of view is strongly limited by aberrations.
Notice also that half of the optieal power is lost upon
reflection on the semitransparent input mirror unless
it is made fully reflective on half of its surface.

F. Resonance Frequency of Arbitrary
Degenerate Cavities

The resonance condition of degenerate eavities in-
corporating astigmatic lenses and polarization depen-

= dent elements is readily obtained from geometrieal

opties. The total phase shift experienced by a ray in a
round trip is equal to 0 (mod 2#) at a resonance fre-
queney. Considering a paraxial ray pencil, the reso-
nanee frequencies are consequently given by

kL — ap + ilog (¢) = 0 (mod 2=), j =12 (7)

where the ray path length L is equal to the optical axis
path length from the Fermat’s prineciple; 2pis the number
of tangential and sagittal foei encountered by the ray
peneil in a round tripf, and ¢, 7 = 1,2 are the polariza-
tion matrix eigenvalues. Values of g and ¥; will be
given in the following seetions for specific eonfigurn-
tions. Notice that u does not depend on the particular
ray pencil considered. A simple argument can be given
to show that the number of foei encountered between
an objeet and an image plane by a ray pencil lying in a
meridional plane is a fixed integer. Consider two rays
limiting & ray peneil and take their positions at the ob-
ject plane, and, consequently, at the image planc, as

hixed. We see by continuity that these two rays neces-

sarily eross a fixed number of times between the two
planes, whatever their original slopes may be, because
they can, at no point, be tangent to cach other (if they
were, they would coincide everywhere).

I1l. Plane Rings with Stigmatic Lenses and an
Even Number of Plane Mirrors

Let us now discuss the degeneracy of a plane ring
cavity with an even number of plane mirrors. If 8,

* Consequently, the end mirror surfaces of the well-known con-
focal eavity® do not coincide, in general, with phase fronts of
the resonating mode, and the resonating field is not, in general, a
pure standing wave.

t The term — au which expresses the phase anomaly of a
ray pencil at a focus cannot be overlooked because g may well be
an odd number in the case of astigmatic lenses.  Notiee that Eq.
(7) is also applicable to nonorthogonal optical systems.

fla, ..., fly are the angles between suecessive reflecting
planes, a closed path generally exists when 6, + 63 +
coo F oy—1 = 0 (mod 7). The optical transformation
is then a translation which leaves unchanged the posi-
tion of off-set rays with respect to the optical axis.
Accordingly, we may consider only the ray transforma-
tion resulting from the foeusing elements, and find the
condition that the ray matrix equal 4 [1].

The ray matrix relating the position and slope of a
ray at the image foeal plane of a (possibly thick) lens of
foeal length f to the values taken at a distanee e from the
object foeal plane is!

I:n—(l,*f} 12:”:{1 f] = [0—(1;‘1’) j;._,af)- (8)

Let us eonsider two optieal elements of foeal lengths
Juand f; on a closed path. It is easily seen, using twice
the expression given in Eq. (S) that the condition for
the round trip ray matrix to be equal to + [1]1s that the
two optical elements ave confocaland fy 4 f: = 0. These
conditions eannot be satisfied with two thin lenses only,
since the total path length would be L = 2f, + 2/ = 0.

A. Three Lens Degenerate Cavities

When there are three lenses of focal lengths fi, fo, fs
along the elosed path, the optical separations ey, ¢, ca,
taken between adjacent foei as shown in Fig. 1(a), are
required to be
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Fig. 1. Three-lens cavity: (a)shows the notations used for the

caleulation of the lens ray mafrix; (b) is the degenerate linear

configuration which may be obtained from (a) when f, = f, =
f, and Cyy = Oy = f;‘ = ff_a'h.g.
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Fig. 2. Four-lens eavity: (a) shows the notations uzed for the ealeulation of the lens ray matrix; (b) shows a ring configuration. By
adjusting the axial position of the lenses, an exact fulfillment of the degeneracy condition ean be obtained, in general: (c) and (d) show
the two degenerate linear configurations that a general four-lens eavity may take.

The total path length, under the above conditions of Iiq.
(9), is

(fifs + fofs + GH)
L=20fi+fi 4[5} et ecnt =" Fi ol =0
(10}

From the requirement that the distance between ad-
jacent lenses is a positive quantity, it follows that the
three lenses must be econvergent. If f» = fi = [, the
optical axis may be folded on itself to form the linear
configuration shown in Tig. 1(b), which includes a
spherical mirror of radius 22 = 2f;, a lens of focal length
f, and a plane mirror. The separations between the
optical elements given in Fig. 1(b) are readily obtained
from Eq. (9). This eavity is somewhat simpler than
the cavities proposed before,’—* which require two
spherical end mirrors. We also notice that the de-
generacy condition ean be fulfilled for any positive values
of R and f by a proper ehoice of the distances.

B. Four Lens Degenerate Cavities

For the ease of four lenses shown in Fig. 2(a), the
required optieal separations between adjacent lenses are
eiven by
fop B _h
R S I h

= fafs — Nifs. (11)

Sinee only three of the above four equations are in-
dependent, we may choose arbitrarily the foeal lengths
and the total path length L = 2(f; + £ + fs + f) +
Ca + ey + e + ey, and ealeulate the values which
should be given to the optical separations from Eq. (11)
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and the above expression for L.* A ring cavity of this
type, using four plane mirrors, is shown in I'ig, 3(h).

Let us consider the special ease in whieh f; = [,
and fz = fi=f". A solution of Eq. (11) ises = ¢4 =0
and e + ¢ (f/f)* = 0. For that solution, the cavity
can be folded on itself; it is equivalent to the linear
cavity, shown in Fig. 2(c¢), which incorporates two
lenses and two plane end mirrors. From the ex-
pression of the distances given in this figure (where [
is an arbitrary length), it is elear that the optieal
transformation due to the internal lenses is telescopic.
It may also be verified that the end mirrors are situated
at conjugate points.

In order to reduce the cavity logses, it is of interest

to replace the internal lenses by internal reflectings

spherieal mirrors.  An obvious diffieulty is that the
internal mirrors (working under rather large in-
cidence angles) present an important astigmatism:
the focal lengths of a spherical mirror of radius £ are’
(12/2) eose and (R/2)/cose in the ineidence plane and
in the perpendicular plane, respectively, if ¢ is the
incidence angle. A simple solution, however, can be
found.

Let us suppose that two spherieal mirrors of equal
radit R are introduced at points 8 and v of the configura-
tion shown in I'ig. 2(¢) in place of the two lenses. If
the plane defined by the points «, 8, ¥ (which are no
longer aligned) is perpendicular to the plane defined by
B, v, 8, a ray ineident on the mirror 8 in the plane of
incidence is perpendicular to the plane of incidence on

* This is nof possible, however, in the special ease in which
fi = F: = fi = fi=/since, then, L. must be equal 1o 8f.

A

the mirror v, and reciproeally. Let us take the in-
cidenece angles at 8 and v as both equal to ¢, If the
distances o and vé are made equal by a proper choice
of the parameter [, the exchange of f = (R/2) cose and
J' = (R/2)/cos¢ is immaterial and the degeneracy con-
dition ean be satisfied simultaneously in the two mu-
tually perpendicular meridional planes. The condi-
tion defining [ which has just been introdueced is, from
the expressions given in Fig. 2(c),

[(£/2) f'.ns‘a]f B I

¥ (/2 cose)?
{ 2 cose { ’

R

o Cose + (12)
If we take, for instance, ¢ = n/4, we get | ~ 1.76R.
The distance between the two spherieal mirrors must
be ~ 1.06R and the distance between a spherical
mirror and the elosest end mirror ~ 0.42R.

The four-lens eavity may also take the form shown
in Fig. 2(d) with two spherical end mirrors of radii R,
Ry, and a single lens of foeal length . This cavity is
more general than the one proposed by ITardy,! who

weonsidered only the ease in which 1/R, + 1/Ry = 1/.

When this last relation holds, the distanees between the
lens and the mirrors become simply Ky and R..  Notice
that the configuration shown in Fig. 2(d) reduces to the
configuration shown in Fig. 1(b) when R. tends to in-
finity, if we keep the upper signs.

C. Periodic Lens and Lenslike Medium
Degenerate Cavities

The case of M identical lenses of focal lengths f with
equal optical separations ¢ is easily treated with the
help of the Sylvester’s theorem. The round-trip ray
matrix is equal to [—1]* when

¢ff = —2 cos(um/M), (13)

where u is an integer equal to the number of (double)
foei eneountered by a ray pencil in a round trip.

A similar condition is obtained for a uniform lenslike
medium with a refractive index n = n, — 2n.2% where 2
is a coordinate perpendicular to the optical axis,

}..(!’tz_:"}io}é = um, (14)

where L is the total path length. Equation (14) can be
derived from Fq. (13) by letting u/M tend to zero, and
identifying the focusing properties of the two guiding
media.

IV. Nonplanar Rings

By using again Eq. (8) we find that a ray matrix
equal to —[1] is obtained with cither two confoeal cle-
ments of equal focal lengths, or with three optical ele-
ments with optical separations opposite to the values
given by Eq. (9). If the lenses are stigmatie, the ray
matrix is equal to — [1]in any meridional plane, and the
transformation can be interpreted as an image rotation
of o about the optical axis. Note that the position of
the plane mirrors along the path is unimportant for the
ray  transformation and that these mirrors may be
taken to be located at the same point on the path.  This
conclusion applies also to astigmatie elements if the

orientation of these elements is properly modified. Ac-
cordingly, the plane mirror system must also provide an
Image rotation of , for the total rotation to be 0 (mod
2m).  This requirement is expressed in the next seetion
from two points of view. First we eonsider the trans-
formation resulting from given reflecting planes. Then
we caleulate the rotation experienced by off-set rays
about a given opfical axis.

A. Imaging by an Even Number of Plane Mirrors

The product of symmetries with respeet to two
planes is a rotation abhout their intersection equal to
twice the angle that they make. The produet of an
arbitrary number of rotations is known to be the product
of a single rotation and a translation along the rotation
axis.'' Clearly, a ray launched along such a rotation
axis, in general, follows a elosed path with a length L
equal to the translation.  The position of each straight
section of the optical axis is obtained by considering the
sequence of reflections which begins at the end of the
section considered. This method neglects, however,
possible interferences between the mirrors.

Let us consider more specifieally four plane mirrors
(1), (Pa), (Py), (P1), and eall 6y, 8; the angles between
(P1), (P2) and (P3), (Py), respectively, » the angle be-
tween the intersections of (), (Ps) and (P3), (Ps), and
take the distance between these intersections as unity.
By taking the produet of the two rotations equivalent
to (1), (P2) and to P(y), (Py), respectively, we get a
round trip rotation @ given by

cos(2/2) = cosfy cosly — cose sinfy =ing. (15)
This rotation is equal to = when
cosy = cob 8 cot b, (16)
and the path length L is then given by
LY = —4 cos(dy + 85) cos(6 — 6;). (17)

Let us apply these expressions to the ease of two 90°
roof tops with 90° between the edges (thisis a combina-
tion of prisms which is often used in binoculars).
Then, 8y = 0y = v = 7/2, I'rom Eqs. (15) and (17) we
see that @ = 7 and L = 2. The elosed path coincides
with the normal to the prism edges and a linear de-
generate cavity is formed by introdueing a self-econfoeal
lens at the middle point between the prisms as shown in
Fig. 3(a).

A similar result is obtained in the case of a corner cube
and an arbitrary plane mirror as shown in Fig. 3(b).
Taking the four mirrors by pairs we sece that: 6, = » =
7/2, which again implies, from Eq. (15), that @ = =
The closed path coineides with the normal to the auxil-
lary plane mirror going through the corner cube top.
These eonclusions ean be reached more readily by not-
ing that a corner eube provides an inversion (r — — r)
with respect to ifs top, and by combining this in-
version with the symmefry with respect to the auxiliary
plane mirror.

Although Eqs. (17) and (16) easily give the total
path length and the condition that the total rotation
equal , the ealeulation of the aetual path of the optical
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EDGES AT 84.7°

(c)

Fig. 3. These figures represent three nonplanar degenerate cavities. In (a) and (b), linear type eavities. In (c), ring fype eavity.

axis is, in general, more infrieate. In the next para-
graph we instead choose a closed path with a [ree
parameter and caleulate the value required of that
parameter for the rotation to be equal to =

Let us consider a closed path A4, ... A.vA, vefleeted
from an even number of plane mirrors.  The total rota-
tion about the optical axig is'®

= f— B+ Bu... By (18)

where B; ¢+1 is the angle between the incidence planes at
A;and A ;.

Let us consider as an example a closed optieal axis
having the shape of a twisted square AyA245444,, where
As, As, A3, Ay have, respectively, the following cartesian
coordinates: (1, —tana, —1), (=1, tane, —1), (—1,
—tane, 1), (1, tana, 1). When tana =(27! — 1/2)}
or @ ~ 24°5, the angles between adjacent incidence
planes are found to be ecqual to eos=* [1/(1 + 2 tan®
@)] = =x/4, the plus and minus signs being alter-
nately applicable. Consequently, the round trip ro-
tation for this value of « is, from Eq. (18), @ = =
We also have: Ajd, = Asd; = Asd, = Aud = 2/cosa
= [2 4+ 2(2)%] =~ 2.2.

The following properties of thiz path are easily
obtained. o N s

(1) The angles between 4,4, A:As and between

AsAs, A1A . are both equal to 2e ~ 49°. -

(2) The total path lengthis L = 4[2 + 2(2)1 ] ~
S.8.

(3) The mirrors at A, As and at As, A4 form two
roof tops with the same angle: 6 = cos'[2sin®a/(1 +
sinZa)] = ecos (1 — 27%) =~ 73°. The edges of these
two roof tops make anangle: » = cos~1[(1 = 4 tana)/
(1 + 4 tan%a)] = cos™1{[3 — 2(2)})/[2(2)* — 1]} ~
84°7, and the distanee between the edges is 4/cos*a ~
48. Notice that the introduction of the above values
in Egs. (15) and (17) gives again: @ = wand L =
412 + 2(2)']%

From the discussion made before, this closed path
constitutes a degenerate cavity if it inecorporates two
identical confoeal lenses as shown in Fig. 3(c). We
recall that a plane ring cavity requires at least three
lenses to be degenerate.
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B. Polarization

Let us give the value of the polarization mat‘ri:'
eigenvalues introduced in See. II. . Upon 1'ef‘100t;§uti
on a perfectly conductive plane mirror, the polarization
vector experiences a symmetry with respect to the nor-
mal to the mirror. This symmetry is equivalent to the
product of a symmetry with respect to the mirror [.1_1;1.11-0
and an inversion (E = —E) with respect to the inci-
dence point. The inversion (which is known to com-
mute with symmetries) caneels out when the number of
mirrors is even and the transformation is, in that case,
the same as for an image, viz. a rotation equal to either 0
or = (mod 2m), depending on the type of dcgeum:at-c
cavity we are considering.  In both cases, the poln_rlzu.—
tion is degenerate and the polarization matrix eigen-
values are, respeetively, ¢ = +landy = —1.

To conelude this chapter, let us remark that the
round trip ray matrices relative to an odd number _of
reflections are, respectively, equal to +4[1] m}d = [l]-m
two perpendicular meridional planes. A ring cavity
incorporating an odd number of mirrors _consequently
require, to be degenerate, astigmatic focusing elements.

v

V. Maxwell Fish-Eye and Luneburg
Lens Cavities

We have diseussed so far the first order pmpert-ics of
degenerate ecavities incorporating lenses. It is of
interest to point out that the Maxwell fish-eye, known
since 1854, is by itself a degenerate cavity free of geo-
metrical optics aberrations.  The Maxwell fish-eye is a
medium where the refractive index n varies as a func-
tion of the distance  to the origin as n = /(1 + 7'2),
where n, is the refractive index at the origin. I.t is
known to image sharply any point in space. Since
every ray trajectory is a circle!® of optical legnth mn,, it
also constitutes a degenerate ring type cavity as de-
fined in the introduction. Sueh a configuration 1s
shown in Fig. 4(a), where the ray r = 1 is taken as the
optical axis. The coupling with a source andl a cletec_tor
can be provided by a narrow slit in the medium acting
as a beam splitter of low reflectivity. A degenerate
cavity is also obtained if the Maxwell fish-cye medium

Sl n

—— OPTICAL AXIS:r=l ne—2

SPLITTER., L+r
IN ouT

“T~OFF AXIS RAY

Fig. 4. (a) Maxwell fish-eye cavity. From a geometrical optics
point of view, this cavity is rigorously degenerate; (b) rigorously
degenerate cavity using the properties of a Luneburg lens.

is limited to the interior of a concentrie reflecting sphere
of radius unity. More flexible configurations ean be
obtained by making use of a generalized Luneburg lens, "
which images sharply a point A into a point B in line
with the lens center C. If two spherical mirrors with
their centers at ' are placed at 4 and B, respectively,
as shown in Fig. 4(b), it is elear that any ray intersect-
ing the lens retraces exactly its path after a round
trip.

At optieal wavelengths, these two configurations are

"l little praetical significance, and the usual methaods of

lens correction have to be considered.

VI. Conclusion

Experiments* made on an active ring type cavity,
which was degenerate in the plane of the ring and half-
degenerate in the perpendicular direction, were found
to be in agreement with the basic results of See. II.
The degeneracy of the cavity was ascertained by ob-

* More detailed experimental results are given in Ref. 15.

serving that the response was not degraded by a mod-
erate off-set of the incident beam in the ring plane.
The acceptable off-set was limited, however, to ten beam
waist radii beeause of the transverse variation of the
laser gain. It was also observed that the transverse
position of the eavity lenses was very eritical in the ring
plane (one-tenth of beam waist radius) and uncritical in
the perpendicular direction, as one may expect from the
discussion of See. II. D.  The exact caleulation of the
field of view of a degenerate cavity requires further
studies. When a degenerate cavity is misaligned and
aberrated, an incident gaussian beam does not recover
exactly its original shape and phase after a round trip.
In addition, its axis is slightly off-set and tilted. As a
consequence, the response of the eavity is shifted in
frequency and the maximum output power reduced.
These effects can be calculated, in principle, from the
knowledge of the transformation of gaussian beams by
refraeting surfaces and the complex coupling coefficient
between gaussian beams.

The author would like to express his thanks to D. C.
Hogg for valuable comments and to T. Li, H. Kogelnik,
E. A. J. Marcatili, D. Gloge, and H. . Rowe for helpful

discussions.
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