COHERENT-STATE OPTICAL AMPLIFIER: A
PROPOSAL
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A new kind of phase-insensitive optical amplifier is proposed
whose output is in the coherent state (ideal laser light) if the
input is in the coherent state. In-phase and quadrature
modulations are preserved in absolute values. Both modula-
tions can be tapped off. The amplifier employs conventional
optical amplifiers, electrical feedback, and all-pass filters.
Remarkably, these properties hold when either linear or non-
linear optical amplifiers are employed.

It is well known that light from lasers operating well above
threshold is in the coherent state (that is, photon emission
times are statistically independent) if we consider only time
intervals that are small compared with the cavity photon life-
time, and that light remains in the coherent state if it is
attenuated. Unfortunately conventional (linear, phase
insensitive) optical amplifiers add in-phase and quadrature
fluctuations. For a power gain G, the output-fluctuation spec-
tral densities are at best 2G — 1 above the shot-noise level.
Accordingly, fluctuations build up in a sequence of optical
amplifiers and fibres [1]. Furthermore, amplitude fluctuations
may be converted to phase fluctuations owing to the Kerr
effect of the fibre.

It was shown previously [2] that the spectral density of the
outgoing amplitude fluctuations may be reduced by a factor
2G — | if the current driving the (semiconductor laser) ampli-
fier is fed forward to an amplitude modulator, coherent states
at the input being converted into minimum-uncertainty
squeezed states at the output. A result not reported before is
that feedback (instead of feedforward) preserves minimum
uncertainty even if the input is not in the coherent state.

In the present proposal, phase rather than amplitude modu-
lators are employed for two reasons. One is that questions
regarding the optical losses of amplitude modulators no
longer arise, at least in principle. The other is that we to
control both quadratures equally. However, a detuned all-
phase filter (DAPF) is now needed to exchange in-phase and
quadrature components. The DAPF consists of a weakly
coupled ring-shaped fibre, slightly detuned from the carrier
frequency. The operation of a similar device was demon-
strated in Reference 3 (with some optical gain to compensate
for residual losses).

The proposed coherent-state optical amplifier (CSA) is
phase-insensitive with respect to modulation and noise.
Output light is in the coherent state if the input light is in the
coherent state. Small-amplitude in-phase and quadrature
modulations of the light beam are preserved in absolute value
while the modulation indices decrease in proportion to the
gain. The two modulations are measured with the same
signal-to-noise ratio from electrical currents. Note that CSAs
are quite different from quantum optical taps whose purpose
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Fig. 1 Schematic diagram of phase-squeezing amplifier (PSA)

The input light is phase-modulated (@) and the optical carrier is
90° phase-shifted by a detuned all-pass filter (DAPF). Light then
enters the optical amplifier (negative conductance and optical
calculator) whose driving electrical current J is amplified and fed to
the phase modulator. The proposed coherent-state amplifier con-
sists of two such PSAs, one with gain G and the second with gain
2—-1/G

optical fibre
electrical feeder

is to tap off in-phase modulation without affecting the corre-
sponding fluctuation, the other quadrature being much
degraded [4].

A CSA consists of two phase-squeezing amplifiers (PSAs) in
cascade, the first with gain G and the second with gain
G°=2—1/G. As shown in Fig. 1, a PSA consists of an
optical amplifier whose pump current is fed back to a phase
modulator, with a DAPF inserted. The optical amplifier is
best modelled as a negative conductance, the incident and
reflected waves being separated with the help of an optical
circulator.

The principle of operation is established on the basis of a
commuting-variable theory that agrees with quantum theory
for large particle numbers [3, 6]. For simplicity only low fre-
quencies and negligible spontancous carrier recombination
and phase-amplitude coupling are considered.

We now clarify our notation. Real and imaginary parts of
complex numbers are denoted by primes and double primes,
respectively. Wave amplitude ‘a’ (such that |a|? is the photon
rate) is written as {a) + da + Aa, where the average {a) is
considered real and the peak modulation da and noise Aa
(both complex) are small. Averaging signs are omitted when
no confusion may result. 2a da’ is the photon rate modulation.
Double-sided spectral densities of 2 Aa’ and 2 Aa"” are denoted
X and Y, respectively. For light in the coherent state,
X = Y = |. Either X or Y may be less than unity (squeezing)
but XY > 1. We define normalised signal-to-noise ratios
(SNR) as s’ = (2 44)%/X and s” = (2 5a")?/Y, and for electronic
rates J, s; = (8J)*/S,,. Subscripts in and out refer to the PSA
input and output.

With optimised feedback the following relations between
input and output fluctuations of a PSA are found to hold (see
the Appendix):

Y.=G—-1+GX, 1/X,,=G—-1+G/Y, (1)
It follows from egn. 1 that minimum uncertainty is preserved,
ie theproduct X Y =1ilX, ¥, =1L

Let this PSA be followed by a second PSA with gain G°
whose inputs are the outputs of the first one, and the outputs
are denoted X, Y. We have, similar to egn. 1,

Y=0G6°-1+GX,, /X =06"-14GY. @

If we select
G=2-—1/G (3)

it follows from eqns. 1-3 that light in the coherent state at the
input (X, =Y,=1) remains in the coherent state
(X = ¥ = 1) at the output, but is amplified by a total gain
G, = 2G — 1. We can also show that the modulations 2a da’
and 2a 6a” are unaffected by the CSA, but the modulation
indices are reduced because the average rate is amplified. The
SNRs of the outgoing optical beam relative to the input
values are

Shut/Sin = SoulSte = 1/2G — 1) (4a)

The electrical current driving the optical amplifiers can be
tapped without perturbation. It is easily established that the
average electronic rate is (G — 1)R for both PSAs, if R denotes
the input rate. The electronic rate J from the first PSA pro-
vides information about the phase, and the electronic rate J°
from the second PSA provides information about the ampli-
tude. If we denote s; and sj the corresponding SNRs we
obtain

5jSin = 83/81 = (G — 1)[2G — 1) (4b)

When the G value is increased a higher signal-to-noise ratio is
obtained locally, but a lower one is transmitted further along
the optical fibre.

In conclusion, we have shown theoretically that phase-
insensitive optical amplifiers that preserve coherent states
could be realised with semiconductor technology. It is remark-
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able that identical results are obtained with nonlinear ampli-
fiers (see the Appendix). The phase of the output optical beam
would follow input phase variations, but only slowly because
of the narrowband DAPF. The proposed device could find
application to sensors where amplitude and phase information
are both needed, part of the information being employed
locally and part of it being transmitted. For nonideal devices,
consideration should be given to spontaneous carrier recom-
bination, an effect that can be minimised with microcavities.

Appendix: The purpose of this Appendix is to prove eqn. 1.
Consider first an active element with complete population
inversion. Let V./(2hv) and I./(2hv) denote the complex
voltage and current at optical frequency v. The rate R = real
(V*I) at which photons are emitted (equal to the rate J at
which electrons are absorbed under ideal conditions) is pro-
portional (constant A) to the carrier number n, which is a
constant for constant-voltage drives, and to the optical inten-
sity P = V*V, plus an internal noise source r’

R=J=AnP + 7 S, =(R> (5)
The spectral density of ¢’ in egn. 5 follows from the quantum
master equation in the large-particle-number limit, or plaus-
ible intuitive arguments [6].

Eqn. 5 is readily converted into a relation between first-
order variations of incident and reflected waves, a and b.
Assuming for simplicity that the transmission-line character-
istic admittance is unity, we set ¥V =b+a, I =b—a, and
obtain the real part of the following relations (linear optical
amplifiers), with subscript 1 at the input

S, =G—1 (6a)
S,.=G—1 (6b

Xout = g%y +u

Vo =8y + "

where X, + iy =2 AG, Xpu+ iVou =2 Ab and g = /(G),
u'=r'la

The in-phase component x;, is equal to y, because it is
unaffected by the phase modulator (see the PSA shown in the
Figure) and because the detuned all-pass filter interchanges
the two quadratures. Considering further that x,, and u” are
independent, eqn. la follows from egn. 6b.

We now prove eqn. 1b. A term F AJ is added to the quad-
rature fluctuation y,,, where F denotes the feedback factor and
AJ the fluctuation of the electronic rate driving the optical
amplifier '

xy =¥a+ FAJ
AJja=A(|b? —|al?)/a = gX,. — X (W]

noise from the electrical amplifier being neglected (low tem-
perature operation). Solving eqn. 7 for x, we obtain

fx, = g1 + [)Xoue — Yix fE ={{ISE Fa) (8)
If we introduce this result in eqn. 6a and solve for x,,, we
obtain

(f+ NG — )Xoy = gyin — S y=GAG—1) (9)
Because y,, is independent of u' (spectral density given in eqn.
64a) we obtain

(f+ NUGC — DX =7¥n +S? (10)

Egn. 1b follows from eqn. 10 when we observe that f= Y, is
the feedback value that minimises X, irrespective of the G
value.

In general (nonzero electrical impedance of the semicon-
ductor amplifier driver or spectral-hole burning) n should
be considered a function of R and a nonlinearity factor k =
—(n/R) dn/dR be introduced. We then obtain in place of
eqn. 6a [6]

(14 kg)x, = (g +K)x, + 1 So=i=1 (L)

while eqn. 6b is unaffected. Proceeding as before we find that
eqn. | remains valid for any x value. The result can be further
generalised to k-photon processes.
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