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Abstract: The circuit theory of laser diode modu-
lation and noise is based only on the energy and
electron-number conservation laws, and on the
well known expression hv(G, + G,) for the spectral
density of Nyquist noise currents. The conduc-
tances G, and G, represent stimulated absorption
and stimulated emission, respectively. This theory
leads to results that are in exact agreement with
the predictions of quantum optics, even in the case
of electronic feedback and non-classical states of
light, but the optical field is not quantised. The
theory is presented in a general form, applicable
to arbitrary optical and electrical configurations,
but is exemplified for only a single active element
model of laser diode. For independent electron-
hole injection, the results are the same as those
obtained from standard rate equations, except for
a phase-noise term. Important differences do
occur for more realistic laser models.

1 Introduction

Oscillators modulated in power or phase can be used to
transmit information, but the transmission is degraded by
random fluctuations. The purpose of any laser theory is
to express measurable quantities (for example, power
fluctuations), in terms of parameters that pertain to the
semiconductor material used in the active layer, to the
geometric configuration of the laser diode, and to exter-
nally controlled parameters such as the injected electrical
current. The modulation and noise properties of the laser
at baseband frequency fthat we wish to evaluate are:

(i) the modulation of the optical power by an injected
current modulation,

(ii) the modulation of the optical phase by an injected
current modulation,

(iii) random fluctuations of the electrical voltage across
the diode,

(iv) random fluctuations of the optical power, (Note
that the output current of an ideal detector reflects
exactly the incident optical-power fluctuations as we
define them. No electronic shot noise should be added.)

(v) random optical-phase fluctuations dé¢(t), described
by a spectral density S,,(f). The laser linewidth (full-
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width at half-power points) is the limit of 2nf*S when the
baseband frequency ftends to zero,

(vi) correlations between the electrical voltage and the
optical power and phase fluctuations.

Useful expressions concerning the laser-diode modula-
tion and noise properties have been derived in the past
from rate equations. These equations describe the time-
evolution of the number of electrons in the active
material and the number of photons in the optical cavity.
For an exposition of the standard rate equations (SRE)
the reader is referred to textbooks such as References 1-3.

In our opinion, the SRE are unsatisfactory both for
conceptual and practical reasons [4]. First, the concept
of the number of photons in the cavity should be
avoided, because this quantity is not well defined in a
medium with gain or loss. Secondly, the Langevin terms
in the SRE can be justified only from heuristic arguments
or complicated quantum-optics calculations. In fact, SRE
may lead to totally incorrect results when the cavity con-
ductance depends on frequency [5]. Attempts to apply
SRE to multielement oscillator fluctuations so far led to
unwieldy expressions.

The circuit theory was first proposed in an approx-
imate form in Reference 6, and in an exact form in Refer-
ences 7 and 8 Our theory is capable of predicting the
modulation and noise properties of multielement laser
diodes on the basis of two simple concepts. The first is
the law of electron-number and energy conservation. Let
vo denote the optical-cavity resonating frequency. Elec-
trons are usually injected in the conduction band at an
energy E_ such that E. — E, > hv,, where E, denotes the
energy in the valence band corresponding to the same
electronic momentum as E_. Electrons cascade down in
energy with the help of acoustical waves until the condi-
tion E. — E, = hv, is fulfilled. (Some energy is lost in that
process but the number of electrons is preserved). The
optical field existing in the cavity may then induce an
electronic transition to the valence band. It collects the
energy hv, lost by the electron. Note that we are, in fact,
considering rates of electron generation or recombination
and optical powers, rather than energy. Unlike the
energy, the optical power is well defined in a medium
with gain or loss. This process of stimulated emission is
of major interest. Some of the electrons, however, reach
the valence band spontaneously and deliver their energy
to optical waves in other modes and at other frequencies
(spontaneous radiative emission) or to other electrons
(Auger effect). Or else, these electrons accumulate in the
active material. The above concepts, when written in an
appropriate mathematical form, suffice to establish the
modulation propertics of multiclement laser diodes.

The second concept is that of amplitude and phase
fluctuations of the optical field, which are obtained by
giving consideration to the Nyquist noise currents that
quantum mechanics associates with optical conductances.
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The double-sided spectral demsity of these currents is
hvo(Gy + G,), where the conductances G, and G, rep-
resent stimulated absorption and stimulated emission,
respectively. Note that these noise currents are not given
for free, so-to-speak: they play an essential role in the
energy conservation law.

The concepts just discussed are well known in physics,
but to our knowledge they have not been used jointly
before. Nilsson and others [9] have proposed a circuit
theory based on the second concept described above, but
energy conservation was not enforced. As a result, the
theory predicts correctly the laser linewidth but not the
amplitude fluctuations. Conversely, the ad hoc assump-
tion of a modified Nyquist current may lead to a correct
expression for the amplitude but the expression for the
phase is then invalid.

In order to implement the above principles, lumped-
circuit elements are considered, whose dimensions are
much smaller than the wavelength (hence the denomina-
tion, ‘circuit theory’). For visible or near-infrared laser
diodes, typical dimensions of the active region are
L=250ym, w=2pum, and d =0.2 um. Thus L and w
are much larger than the operating free space wavelength,
and the active region should be decomposed into smaller
volumes. The general multielement formalism given in
this paper (which is applicable to arbitrary optical and
electrical configurations at any baseband frequency) is
required in principle to account for the laser diode spatial
inhomogeneities. However, the theory will be exemplified
here only for a single active element, and compared with
SRE. Some of the intermediate quantities introduced,
such as the optical current or the conductances, are
unusual in laser theory, but the final expressions are
written in standard notation. Some changes of notation
from Reference 8 have been made.

A number of important effects, such as the stability of
the main-mode, damping of the relaxation-oscillation
stronger than expected, nonthermal frequency deviations
resulting from slow-current variations, or the influence of
side-modes on the main mode linewidth, cannot be
explained by the simple theory that assumes spatial
homogeneity and linear gain. An explicit dependence of
the optical conductance or gain on the optical field
strengths (nonlinear gain) has been invoked to explain
these effects. However, it may be that linear gain suffices
to explain the observed facts if spatial inhomogeneities
(along the three space directions) are fully accounted for.
The circuit theory sketched at the end of the paper could
nevertheless account for nonlinear gain if this effect
turned out to be required. Thermal fluctuations and 1/f
noise are not important above 1 MHz, and are not con-
sidered.

The simple-oscillator model discussed in detail in this
paper seems to be approximately applicable to strongly
index-guided spatially-homogeneous solitary diodes
when the drive current exhibits shot-noise fluctuations.
For most lasers, however, this simple model is not applic-
able, and the circuit theory leads to results that may
differ drastically from those obtained from S.R.E.

Sinusoidal variations are denoted using an
exp (—i2nve) convention at optical frequencies, an
exp (j2nft) convention at baseband frequencies, and root-
mean-square values are implied. f is assumed to be much
smaller than v. As far as random processes at baseband
frequency f are concerned. double-sided spectral densities
(Fourier-transforms of the covariances) are uscd. Note
that if 4 = Xa, x,, B= Xb, x, are the weighed sums of
independent processes x(f) of spectral density S, , the
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cross-spectral density of 4 and B is
Sip= Zaz‘basx. (1)

where the star means that j should be changed to —j. We
call the normalised modulus of S ,; correlation.

2 Laser parameters

Let us consider first a small cylindrical direct band-gap
semiconductor sample, of cross-section area Lw and
thickness d. This piece of semiconductor material exhibits
an optical conductance G(N), where N is the number of
electrons in the conduction band. It is connected to an
external cavity modelled as a parallel susceptance B(v), as
shown in Fig. 1, which vanishes at the resonant frequency
vo (the label ‘1" is omitted in the present section). The
laser (semiconductor element plus cavity) is loaded by a
detector of positive conductance G,. The transmission
line shown in the figure connecting the laser to the detec-
tor may be realistic al far-infrared frequencies, but at
optical frequencies it should be considered as modelling
the appropriate optics (focussing lenses). Self-oscillation
occurs when the semiconductor optical conductivity is
negative and attains a sufficiently large absolute value:

G(N) =~ —G, (2)
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Fig. 1

a: the laser diode output is focussed on a detector

b: schematic representation of the optical cavity, modelled as a paral-
lel capacitance-inductance circuit, shown separated from the negative
conductance semiconductor, and focussing lens is represented by a
transmission line

c: circuil representation of negative-conductance laser diode (label
‘') and positive-conductance detector diode (label *2'). The optical
cavity is represented by the parallel susceptance B(v), labelled ‘optical
circuit’, The laser diode is current driven with electronic rate E, and
noise current e, I, I, are optical currents and V is the optical voltage
across the circuit. ¢,, ¢, are Nyquist noise currents. The A-waves are
forward propagating waves, the B-waves are weak backward propagat-
ing waves

A semiconductor is characterised primarily by its
bandgap energy E, corresponding to a bandgap optical
frequency v, given by hv, = E,. When the semiconductor
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is submitted to an optical field at frequency v, the pertur-
bation of the electronic wave functions results in an
induced optical current that can be expressed by a con-
ductivity o and a permittivity &. For a cylindrical piece of
semiconductor the admittance is

Y(v, N) = G(v, N) + iB(v, N)
= (0 — i2ave)Lw/d (3)

According to simple theories, neglecting band-gap
shrinkage and band-tail states, the minimum value of
G(v) (maximum gain) for some N-value occurs at a fre-
quency v exceeding slightly v,. For the single-mode oper-
ation considered in this paper, the weak dependence of Y
on v can be neglected, and for simplicity, we also assume
that the steady state value B(v,, Ny) = 0.

In laser diodes, the electrons are injected from an elec-
trical power supply into the conduction band of the semi-
conductor with the help of a PIN junction. As we
discussed in the introduction, most of these electrons
deliver their energy to the oscillating optical mode as
they fall down into the valence band, but some of them
deliver their energy to nonoscillating modes, mainly radi-
ation modes, or to other electrons or to acoustical waves
(nonradiative recombination). Otherwise. they accumu-
late in the active region. The law of conservation of elec-
fron number and energy therefore reads

dt

In eqn. 4, E is the rate at which electrons are injected into
the semiconductor, outgoing electron rates being defined
as positive for later convenience. The rate S at which
electrons reach the valence band spontaneously (with an
energy loss which need not be specified here), is a func-
tion of N. dN/dt (if positive) is the rate at which electrons
accumulate. The term in parenthesis in eqn. 4 is thus the
number of electrons that deliver an energy hv, to the
oscillating mode, per unit time. We find it convenient to
denote the outgoing optical power in the oscillating
mode as Phv,. However, it would be misleading from a
conceptual point of view to think of P as being a photon
generation rate. The concept of photons (elementary exci-
tations of the quantised optical field) is not used in this
paper.

A relation analogous to eqn. 4 applies to detectors as
well, but in that case E is positive, P is negative, and S
can be neglected because the carrier density is small. If
the output P from a laser diode is focussed on an ideal
detector, the electronic rate E at the detector output is
equal to P at small frequencies f. This conclusion, again,
does not imply that the incident light consists of photons,
but only that energy and electron number are conserved
quantities.

Let us first consider time-averaged values. Eqn. 4 and
the oscillation condition given earlier read, respectively.

E4+SN)+P=0 (5a)
G(N) ~ —G, (5b)

dN
(E + S+ —)hvo + opt. power = 0 (4)

E may be specified if an infinite internal impedance
clectrical source is used to drive the diode. Otherwise, E
depends on the electrical voltage U across the laser diode
through Ohm’s law. The electrical voltage U across the
diode is equal to the energy spacing between quasi-Fermi
levels in the valence and the conduction bands, divided
by g, if one neglects the voltage drop in the confining
layers and contacts. At a given temperature T, the elec-
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tronic density in the conduction band (equal to the hole
density in the valence band for undoped active layers) is a
unique function of U. The voltage U is a monotoni-
cally increasing function of the number N of electrons
in the conduction band, U = U(N). For a laser diode,
U > hv, while U < hy for a detector.

As far as the spontaneous emission rate S is concerned,
let us note that it takes, on average, a time of t,
(approximately the same for all the electrons in the band)
for an electron in the conduction band to fall sponta-
neously into an empty state of the valence band. Thus, if
the k-conservation rule holds, the spontaneous recombi-
nation rate § at T = 0K is equal to N/t,. There are devi-
ations from this linear law, however, resulting from
nonzero temperature, relaxation of the k-conservation
rule (in which case S may be proportional to N?), or non-
radiative Auger recombination (S oc N¥), and we set the
spontaneous recombination rate S as some function S(N),
in general.

Eqn. 5b can be solved for N and the result carried into
eqn. Sa. In conventional notations, the time-average of
the quantities S, E and P are written as

So = Iu/q
_ED = !e“#q
P, = av. opl. power/hv, (6)

where I, is the injected current, I, the threshold current,
q the absolute value of the electron charge, and hy, the
transition energy. From eqns. 5 and 6, we obtain the well
known relation

av. opt. power I, —1I,,
hvg g

In summary, theoretical analysis or measurement of
the electronic and optical properties of the semicon-
ductor sample provides three functions: U(N), S(N) and
Y(N). The average oscillation parameters, v,, Ny, Uy,
.P,, follow from the oscillation condition and the time-
average of eqn. 4.

In order to evaluate the diode modulation and noise
one needs to know how E, §, P deviate from their
average values. The first-order variation of the conserva-
tion law in eqgn. 4 reads at baseband frequency f for any
element,

()

(j2nf + Sy)ON + 0E + 6P +5,=0 (8)
where we set

O0E=EyoN +e,+m (9a)

08 = 85, 0N + s, (9b)

0P = PyoN + p, (9c)

where 6N is the variation of the electron number N and
subscripts indicate derivatives, e.g.: Ey = dE/dN. The
terms e,, s,, p, are additive noises, and m expresses the
injected current modulation.

Let us show how the terms in eqns. 8 and 9 can be
evaluated. The parameter Sy follows from the semicon-
ductor properties as we have seen earlier. Because spon-
tancous emission is supposed to consist of independent
events, the spectral density of s, is given by the usual
shot-noise formula

S,, = S(N) (10)

Consider next JE. If the active elements are intercon-
nected electrically, eqn. 9a should be written in matrix
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notation
OE=EyoN+e, +m (11)

In the absence of electronic feedback and carrier diffusion
between active elements, Ey, is a diagonal matrix. Its ele-
ments depend on the driving-circuit admittances Y.(f).
Leaving aside noise terms and modulation we have, using
Ohm’s law,

0E = =dl,/q; ol, = Y,0U = Y.Uy 0N (12)
Therefore,
Ey=0E[6N = — Y, Uy/q (13)

For simplicity we now assume that the driving circuit
matrix admittances vanish Ey = 0. The spectral densities
of the noise terms e, depend in general on the driving
circuitry. If the driving circuit generates shot-noise, the
spectral density of e, is equal to | E|. In general, we set
the spectral density of e, as equal to £| E|, ¢ > 0, and the
cross-spectral densities are supposed to vanish.

The noise term p, has its origin in the complex
Nyquist-like noise current c(f) = ¢'(t) + ic”(1) associated
with conductances according to the fluctuation-
dissipation theorem. The conductance G is written as
G, — G, , where the conductance G, is the result of stimu-
lated absorption, and the conductance G, to stimulated
emission. The (double-sided) spectral densities of the
Nyquist currents are [14]

Se =8 =Gy + G)=hvG(1 —2n) S...=0 (14)
where the so-called spontaneous emission factor

G
= 1
o (15)

is unity for complete population inversion (strong
pumping at T = 0K), and of the order of 2 at room tem-
perature.

To summarise, the semiconductor material is charac-
terised by five dimensionless parameters:

u=(N/UUy s=(NN/S)Sy g =(N/G)Gy
n, a= —By/Gy (16)

The phase-amplitude coupling factor « is of the order 5.
These parameters are constant above threshold because
we assume that N is clamped to its threshold value.

Let us now consider the laser geometry. As shown in
Fig. 1, a simple model of optical cavity is a parallel sus-
ceptance B(v). If G, denotes the load conductance, the
cold cavity linewidth f; is defined from

1/2nfo = t, = — Bu/4nG, (17)

If B consists of a capacitance C, and an inductance I, in
parallel, then for example

B(v) = —2nvC + 1/2nvL = —4aCov
dv=v—v, LCQ2rvy)*=1
1, = 1/2=nf, = C/G, (18)

and for a laser with length L, group velocity v,., internal
power loss ., and mirror power reflectivities R,, R,, we
have approximately

. 1 1
onf, = ug:(am +5pIn 3 Rz) (19)
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Finally, we shall make use of four operating param-
eters:

{=§/P r=1j1,=2nf,N/S
x=flfo &) (20)

¢ expresses the injected current fluctuations. It may
depend on f and on the bias injected current. A standard
value is & = 1 (shot-noise).

All the laser diode properties can be expressed in
terms of the nine dimensionless quantities: , s, g, . n.. {,
r, x and ¢ Because some of these quantities enter in
group, it is convenient to define the following

n=1/1+)

C=(C+ 1 +£&

D =g+ sC+jrEx — g/x)
F=[C—1+2nl+1/x*]/|DJ? (21)

In numerical applications, we shall use the parameter
values in Table 1 below that are adapted from Table
6.1 and 6.2 of Reference 2. dU/dN, not given in Reference
2, has been evaluated separately. These numerical values
are applicable to buried heterostructures operating at a
free-space wavelength of 1.3 ym, with geometrical dimen-
sions L =250 um, w=2pum, d=02um. hy,P is the
optical power in the oscillating mode, dissipated inter-
nally in the laser diode as well as externally. The S-value
given corresponds to a threshold current ¢S = 15 mA,
and the operating current I, = ¢(S + P) = 77 mA for the
P-value indicated.

Table 1: Numerical values of the parameters

U=1v N=21108 §$=9610'8¢-"
uv=01 s=1.8 g=1.9

n,=2 a=5 o =100 GHz
P=410"75s-" (61 mW)

{=S/P=024. r=2nf, N/S=1 370.

Simor =

3 Evaluation of 6P = P, oN +p,

The purpose of the present section is to evaluate the
variation 6P of the normalised optical power P, which
enters into the conservation law, eqn. 8. This quantity
splits into a term proportional to the carrier number
variation N, and a noise term that we denoted p, .

Let us consider a conservative (lossless-gainless) linear
n-port optical circuit. Nonlinear semiconducting elements
of steady-state optical conductances G, are connected
at the ports. Subscripts ‘0’ refer to steady-state values and
subscripts k=1, ... n label the ports. These subscripts
are omitted when no confusion may arise. The diode
series resistance, stray capacitance and lead inductance
are parts of the electrical circuit, while the optical cavities
and the steady-state optical susceptances belong to the
n-port optical circuit. Let V' denote the optical voltage
across the active element, and I the optical current enter-
ing into the optical circuit (see Fig. 1). We define 4 and
B-waves [not to be confused with susceptances denoted
B(v)] according to

A=G,V—I B=G,V+1 GV,4I,=0 (22

Note that the steady-state conductances G, can be either
positive or negative. It follows from the expression
Re(V*I) of the power flow that A-waves go from negative
conductance elements to the optical circuit or from the
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optical circuit to a positive conductance element, while B
waves are weak counterpropagating waves that vanish in
the absence of perturbations. The steady-state optical
power going from the optical circuit to a nonlinear
element is WP = G, | ¥ |

Now consider small deviations denoted by d; 6V =
V— Wy, Sl=T—1,, 8G=06—=0g, SA=A— i,
dB = B.

Eqn. 22 gives to the first order

0A =G0V — 81 B=GyoV + ol (23)
Kirchhoff’s law reads (see Fig. 1)
I+¢c+ YV =0 Y=0G;+ Gl —ix (24)

where ¢ = ¢’ + i¢” denotes the Nyquist-like noise current
and « the phase-amplitude factor defined earlier. Using
the definition of B in eqn. 23, the first-order variation of
eqn. 24 is

B+3G(l —i)V+c=0 &G =GydN (25)

This relation shows that the counter-propagating
B-waves consist of a term proportional to dN and the
Nyquist noise source. For a linear element (e.g. an ideal
detector), G = 0 and only the Nyquist source needs to
be considered.

We are now in position to evaluate the first-order
variation of the optical power

hvP = Re (V*I) (26)
Using the expression in eqn. 23 of 64 we obtain
0P = Re {(V*/hv)dA} <> 0P/2P = Re {6A4/A} (27)

Thus, the variation of the optical power emitted by an
element with gain or absorbed by an element with loss, is
proportional to the real part of the forward propagating
A-wave variation. The backward-propagating B waves
do not contribute directly to dP in a linearised theory
(64 < A), but they are nevertheless essential to the for-
mulation (see below). The preceeding relations apply to
any of the nonlinear elements.

Let the n-port linear optical-circuit be characterised at
some optical frequency v by a matrix impedance Z{v)

The propagating 4 and B-waves are related by a

scattering-like matrix

B =S4
S=1+2AG,Z—1)" (29)

where G|, is a diagonal matrix with elements G,,, and 1 is
the identity matrix. (Because we use unconventional
notations for the 4 and B-waves, § is not symmetrical for
a reciprocal circuit, and not unitary for a conservative
circuit).

To treat small variations occurring at baseband fre-
quency f, it is convenient to use the bi-complex notation
discussed in Appendix A, in which ‘i’ and ¢ refer to time
variations at optical and electrical frequencies. respec-
tively. Re(.) and Im (.) refer to ‘i’ exclusively. The rela-
tion between the 4 and B-wave variations is

B = Slvy + ijf )04 = (8, + 8, ijf )64
S, = S(vy,): S, = dS/dv (30)

Because [ < v, a first-order expansion of § is sufficient.
In general, S, is finite but singular. In the special case
treated below one must invert directly S(v).
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Finally, introducing egns. 30 and 25 into eqn. 27, we
obtain

0P, = Re {(VF/hv)oA,}
34 =[St +iif)] "B
—B,, = G.¥l — ia,)V,.6N,, + ¢, (31)

0P, is expressed in egn, 31 as the sum of terms pro-
portional to the N, and noise terms. Eqns. 8-15 and 31
solve the general problem.

4 Solution for two elements (laser + detector)

Our formalism is now applied on the 2-element configu-
ration shown in Fig. 1. Subscripts 1 refer to the laser
semiconducting element. Subscripts 2 refer to the detec-
tor. The detector is assumed to be linear. that is, to have
a constant conductance. In that case it would be possible
to treat the detector as part of the optical circuit and use
an S-matrix of order 1: the reflexion coefficient. But
because the optical circuit becomes nonconservative,
there are noise waves generated by the optical circuit.
Such a one-element theory is simple as far as modula-
tions are concerned, but for random fluctuations the
2 x 2 formalism used below turns out to be more conve-
nient,

The 2 x 2 Z-matrix of the optical circuit is easily
obtained from Ohm’s law: I, + I, = iB(v)V, where V =
V, = V; taken as real for convenience denotes the optical
voltage across the circuit. The parallel susceptance B(v) is
given in eqn. 18. The expression of the 2 x 2 scattering
matrix § follows from eqn. 29. The relation between the
counterpropagating B-waves and the fluctuations of the
forward-propagating d4-waves

34 = (S, + iif)] 'B (32)
is explicitly

04, = —(1 +z)B; — zB, (33q)

04; =zB, — (1 —2)B, z=fylif= —j/x (33b)

If we substitute eqn. 33 into egn. 31, we obtain
0Py = (1 + z)gPoN/N + (V/h[(1 + 2)¢; + zc5] (34a)
0P, = —zgPON/N + (V/hv)[—zc) + (1 —2)c5]  (34b)

where we have replaced —G,V?%/hv by the steady-state
value P, set N, = 8N, 8N, = 0,and
_ N dG,
~ G, dN
Let us now substitute the expression of 6P, from

eqn. 34a into the particle-rate conservation law, eqn. 8,
applied to the nonlinear element 1. We obtain

g=d (35)

D,6N +s,+e,+m+p,=0 (36)
where
D,=j2af+ Sy + (1 + z)gP/N (37)

Note that the laser-diode complex relaxation frequency
f..isaroot of D,(f). We also obtain

. = (V/W)[(1 + 2)¢y + z¢5] (38)

Egn. 36 gives 6N as a function of independent noise
sources. The spectral densities of the Gaussian processes
S,, €,, ¢, ¢, are, respectively, 8, &|E|= &S + P),
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hv(2n, — 1)G, and hvG, . We have therefore
S, = {[1 + (fo/£)212n, = 1) + (ol S)*}P

The formulae will now be expressed in terms of the
dimensionless parameters defined in eqns. 16, 20 and 21.

(39)

5 Laser diode admittance

The diode admittance Y, (‘oe’ for optoelectrical) is the
ratio of electrical current and voltage variations. Its
expression follows from egns. 36 and 37 with the noise
terms suppressed.

ol,
Y — —= —
% = sU
= gN Lj2nf + Sy + (gP/NX1 + fJ/if )]
= j21fC,. + Goe + (127fLoe) ™

where we have introduced, as in References 11 and 12,
equivalent electrical circuit elements Y. is modelled as a
capacitance C,, a conductance G, and an inductance
L, in parallel. For the parameter values in Table 1, we
calculate C,, = 336 pF. G, = 1.4 Siemens, L= 13pH.
The complex relaxation [requency is f.=16
+ j0.35 GHz. As is well known, the relaxation frequency
(resonance of C,. and L) increases as the square root of
the emission rate P. As P increases, the conductance G,
also increases and the relaxation gets more strongly
damped. A complete model of diode admittance should
include the scries resistance R, ~a few ohms, the lead
inductance, and a parasitic capacitance. The non-
reciprocity of the equivalent optoelectrical circuit appears
only for a more complete detector model.
A convenient form is obtained by dividing ¥, by the
static diode admittance Y, = I,/U. We obtain

Yoo

oes

N AL
v SN

(40a)

(40b)

= nD/u

6 Electrical voltage fluctuation

The basic relation is again eqn. 37 in which we set now
m = 0, but keep the noise terms

aN = _.len + Sp = plr)"rlDu (4 ]'}
The spectral density of 6U = Uy SN is given by
PSsyy = w'F (42)

In the limit in which f— 0, the spectral density of 6U/U
is, more explicitly,

o
WiV =\ G, dU P
At large power levels, eqn. 43 applies to any frequency

[8]. For the parameter values in Table 1, we calculate
Syw=3610""4° (Hz)~*.

(43)

7 Optical power modulation

According to our sign convention, the variation &P of the
normalised optical power emitted by the laser diode is
equal to 5P, , and the injected clectronic rate is —m. The
expression for 0P follows from eqn. 34h without the noise
terms, and with 8N = —m/D,. In terms of the dimen-
sionless quantities in eqns. 20 and 21:

3P/(—m) = g/jxD (44)

60

The ratio in egn. 44 is unity at small baseband fre-
quencies when both electron and photon storage can be
neglected. Indeed, in that limit, N does not vary and thus
the rate of spontaneous emission S is invariant. Since the
quantum efficiency is assumed to be unity, it follows that
the normalised optical-power variation equals the
electron-rate variation. In terms of optical power and
electrical current we have more explicitly,

opt. power mod.

hy
= I s ¥ o 2eai=rd
current mod. q (1 +jx(l +st/g) (rL/g)x°]

(45)

8 Optical power fluctuation

The same basic relation in eqn. 34b is used, setting this
time m = 0, but keeping the noise terms. We obtain:

4PS;p0p = 1 + [(C— Dg? + o, 13(s* + r*x?))/x*|DI?
(46)

The variation of Ssp is represented as a function of fin
Fig. 2 for the parameter values in Table 1. Measurements
do not in fact show relaxation peaks as pronounced as
predicted by the simple theory. To explain the strong
damping of the relaxation oscillations, nonlinear gain has
been invoked. There are, however, other mechanisms that
could be responsible: weak transverse guidance, trans-
verse diffusion, and longitudinal carrier-induced gratings.
S, is also represented in Fig. 2 for the case in which the
injected current does not fluctuate (¢ = 0). The difference
is significant at low frequencies.
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Fig. 2 Variation of spectral density of optical power fluctuations, as
funetion of baseband frequency f in GHz. with (¢ = I) and without (& = 0)
injected-current fluctuations

— no shot noise
~ - - — shot noise

The correlation between the optical-voltage fluctua-
tion and the optical-power fluctuation at small f-values is

Cg?. —-1/2
ol {1 E 2nssﬂ’*:‘*}

Cpy is shown in Fig 3 as a function of P/S = I /I, — 1.
The correlation coefficient decreases from unity at thresh-
old down to zero at large powers. At large powers, this
correlation coefficient vanishes at every frequency [8].
The variation of Cpy for the case where the injected
current does not fluctuate is also shown. We see that Cpy
depends strongly on the ¢-value. For measurement pur-

(47)
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Eosis, f = 10 MHz would be an appropriate frequency. It
ps oximates well t'hc low-frequency limit of the theory
and is sufficiently high that thermal effects and 1/f noisé

should be negligible.
!

Cous

00 L 1 | | 1 1 1 1 | |
F4 4 6 8 10
[e‘r Ith“’
Fig. 3  Correlation coefficient between electrical-voltage across the

laser diode and the opti,

; ptical-power fluctuations at f= 10 MHz as 1
o_{ the ratio of fn,_rec:ed current and threshold current wf::‘(?—{ufmm
without (¢ = 0) injected-current Sfluctuations . i
no shot noise
——~~ shot noise

9 Phase modulation

The phase deviation
complex phase
1oP = 34

¢ follows from the concept of

(48)

do;t e:;ci); specifically, from analysis of the homodyne-
s process. While the optical power variation is
ed to the real part of 34/A, the phase variation 6 i
related to the imaginary part of 54/4 e
We first obtain from eqn. 31 and 3 at

1

(\Sv;ci;e gv:s the phase-amplitude factor defined earlier and
- cg:]::tlg cq;. 44. Unless o is very large, a phaseshift
el accord'e obtained by a small-signal current modu-
S ing to the present theory. Eqn. 49 provides a

NS of measuring o. However, the predicted phase dif-

ference of m between & P i g
at high frequencies unlyq.b seioRistonad tepenmpnially

any frequency

(49)

10 Phase fluctuation and linewidth

The spectral densit
s y of the phase fluctuation d¢ = i
obtained from eqns. 48, 31 and 33, keeping¢tf:ear?;i;§

terms but suppressing the modulation. We obtain
4PSJ¢ =14+ M
= (50)

In the limit of large frequencies, eqns. 46 and 50 give

Fue 4P 4
(the right-hand-side of ¢ i i
nd qn. 51 is unity if single-si
spt;:ctral densities are used. This is twic{: th:":i?ilﬁitsli?jerﬁ
value allowed by quantum optics for any state of light)

(51)
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E:: :gx;;tio? of S,4 is shown in Fig. 4 as a function of f
of mjected current fluctuations, while slricth;

nonzero, is too sm
e all to appear on the curves (less than

= | | i

_2 -
10 10" 1 ' i
f(GHz)
Fig. 4 7 ity i ;
g Spectral density in Hz ' of the phase fluctuations as function of

the basebami ﬁ‘é’q‘ﬂéﬂf} fll'il GHz. 1T he e{ﬁecr af 1y urrent ]iu([lfa'
f ected ¢
tions (fess Ihﬂﬂ one per Ceﬂf} is too small to appear on the cur te

The laser linewidth foll
_ ows from the low-frequen
behaviour of Ss6 as shown in the introduction. We ?)btag
2rAvP/hy = (2 £ 2
(2nfy) > (1 + o®)n, (52)
L(ch:nny ttf-&ralue. The conclusion that the laser linewidth
ot depend on injected current fluctuations hold
only for a single active element. s

The correlation b
: etween phase and amplitu
tions at low baseband frequencies is AR T

Gy Sl
* -l +a?) ™ (53)
The factor Cpy, gi ; ;
5 given in eqn. 47 i
-omitted only just above :hreghold‘ e

11  Conclusion

We —
mod::li:? shown that the:_ circuit theory of laser diode
Teau! lon and noise, which is based on familiar conser-
e z:t:\::r (:llun'_lber of electrons and energy) and
Ny ents, Is capable of predicti 1
tities of interest at an e
y baseband frequency and fi i
' i or arbi-
;trg optical gmd electrical configurations. The theory Ll:s
o e:;fn:jplilﬁed only for a one-active clement laser-
L odel. In that case, and assuming shot-noise
e current fluctuations, we find an exact agreement
e t; nft::;ciig]:d rate b:quations (SRE), except for a
must be added ad h
e oc to the SRE (see
( ; amoto has pointed out th i
at there is
g?.;g:usi;i‘g urlzasor;] _;{hy the current injected in a lasnc(:
. exnibit shot-noise fluctuati
o eX : ons. We hav
wjﬁf:g;rgdlthls situation only for the sake of compariso;:
il n a real {multlelvcmcnl) laser, the precise value
e Jected-cufrept density fluctuations would be diffi
pmce(:s ::algiagtszﬁas it d;p;nds on complicated electronic
pr : ificant differences do occur wh
: en t
}lgi]'?:ted current ﬂuctugtlons are modified, e.g. suppresseilic
pont is of particular interest with respect to rhe:
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From a practical viewpoint, the major differences
between the circuit theory and SRE occur when the
cavity conductance depends on the optical frequency at
the operating point, as is the case for lasers with gain-
guidance or weak guidance. This dependance entails an
enhanced relaxation oscillation damping, and a linewidth
enhancement not given simply by the K-factor [5].

Only a single optical mode has been considered. It has
been found experimentally that side-modes of moderate
power may importantly enhance the main-mode line-
width. This experimental result cannot be explained by
the simple theory that postulates linear gain and spatial
homogencity as was shown in Reference 15. An explana-
tion of the observations based on nonlinear gain [3] is
plausible. However, spatial variation of the % factor con-
stitutes an alternative mechanism [4] that should be
investigated in detail.

The circuit theory should be ultimately capable of
treating laser diodes having arbitrary spatial inhomoge-
neities in three dimensions, with the help of a finite-
element method. For that purpose, the S-matrix
formulation given in this paper may not be the most
practical. It is preferable to set the optical-current and
voltage variations for some active element as
Sl =1TI'+il" and 6V =V’ +iV", respectively, and to
write down the linear relationship existing between
[I"I"] and [V’ V"], with additional noise terms. For
example, if the laser length is subdivided into n = 1000
elements, this alternative procedure requires only multi-
plication of n 4 x 4 matrices, while the S-matrix formal-
ISm requires inversion of a n x 1 matrix.

In conclusion, it appears that the circuit theory [8] is
more directly tied up to admitted physical laws than
SRE. It essentially agrees with SRE for simplified models
but is more accurate in general situations. The theory
appears to be in exact agreement with Quantum Optics,
but is much simpler to use because the optical field is not
quantized.
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13 Appendix A: the bicomplex notation

For brevity, let us set w = 2nv, Q= 2rf. Consider first
the standard complex notation at optical frequencies. We
associate with the complex number 4 a real function of
time A(r) according to

A(t) = Re {A exp (—iwt)} (54a)
and the response of a linear system is
B(t) = Re {B exp (—iot)} B = S(w)A (54b)

where S(w) = §%(—w) is the complex response function.
Now consider the signal

A(t) = (¢’ cos Qi — ¢” sin Q1) cos wt
+ (d" cos Qt — d” sin Q) sin wt (55)

which represents sinusoidal modulations at angular fre-
quency Q of both the in-phase and the quadrature com-
ponents of the optical signal at angular frequency w. The
A(t) spectrum contains only the frequencies @ + Q and
@ — Qin the positive frequency domain.

Standard methods give the response

B(t) = 3 Re {S(w + Q)c' — ic" + d” + id)
x exp [—il@ + Q)] + S — Q)
x (¢ +ic" — d" + id) exp [ —i(er — Yt]} (56)
A much more concise notation consists in writing
A(1) = Re Re{ 4, exp (—iwt + jQr)}
Ay = +jc" +ild +jd") (57)

where Re; has the same meaning as :Re’ but refers to

rather than %",

With that notation, eqn. 56 can be written as

B(t) = Re Re;{B,, exp (—iwt + jQu)} (584)
where
B,. = S(w + ijQ)A,, (58b)

To prove that eqns. 56 and 58 are equivalent, it suffices
to expand S in power series of €, assuming that S is
analytic in a sufficiently large domain about w, and con-
sider separately even and odd powers of Q. The calcu-
lations are lengthy but straightforward.

14  Appendix B. Standard rate equations

The standard rate equations (SRE) keep track of the
number of electrons in the semiconductor and of the
number of photons in the cavity as a function of time. We
consider here the formulation given by Agrawal [2],
modified or clarified as follows.

(i) Nonlinear gain is not considered, and thus we set:
aG/oP = (.

(ii) Terms depending on the rate R, of spontaneous
emission in the oscillating mode are very small and are
omitted. They do not appear in a consistently linearised
theory.

(iti) It is considered implicit that the driving circuit
gencrates shot noise.
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(iv) The notation is converted to the one used in this
paper as follows:

G — 2nfy; Gy = 2nf,G5/Gy 5 P — P[27fy
YeN—8; y. + Ndy,/dN — Sy
R,, — 2nfon, = nt,
2D — S (double-sided spectral densities)
op — — ¢
0P — 6P/2xnf, (59)

The latter two transformations need comments. In
SRE &P refers to intensity noise only. The prescription
therefore is made that one must add to the detector-
current spectral density resulting from the intensity noise
6P an independent term (equal to P in our notation).
This term is interpreted physically as being the result of
the detector-current shot-noise, or, alternative, as being
caused by the photon noise. (The SRE prescription, inci-
dentally, precludes that the detector current fluctuation
could be less than shot noise). Our JP has a different
meaning: it gives directly the total detector-current fluc-

“— tunation, and may be less than shot noise. as is also pre-

dicted by quantum optics for light beams w_ith
‘subpoissonian photon statistics’. The SRE prcsc;'iptlon
just discussed is incomplete as far as the phase is con-
cerned. In order to reach exact agreement with quantum
optics one must also add a term 1/4P (in our notation) to
the phase spectral density predicted by the SRE.

It would not make sense to compare our rate equa-
tions with the SRE since the quantities 0P, d¢ do not
have the same physical meaning in the two formulations.
What we can do is compare the predictions of the two
theories for measurable quantities, such as the detector-
current spectral density. _

Eqgns. (6.5.4-10) of Reference 2 become in our notation
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J(f/fo)OP = gPSN/N + Fp
J27f 6N = —(s{ + g)PSN/N — 6P + Fy

2i(f/fo)Pd¢p = —agPON/N + F,

Sep=2n, P Spy=2n,P + 2§

Spppy= =2, P Spy=2nP (60)

and the other cross-correlations vanish. _ _
If we eliminate 0P from the two first equations in
eqn. 60 we find

PDSN/N = Fy -Er—;' Fp (61)

where D was defined in eqn. 21. The spectral density of
the process on the right-hand-side of eqn. 61 is the same
as the one of our noise term s, + e, + p, when £ = 1, and
thus egn. 61 coincides with our result for that case.

Consider next the optical power fluctuations. We have
from the previous equations

OP/P = (Cr/i2nf ND)[(sC + g + jxrQ)Fp + gF \]
S;p = P+ 2P[Lg* + n L% + r*x3)])/x*| D>  (62)

The first term, P, does not follow from the preceeding
expression of dP. It was added according to the SRE pre-
scription. (In egn. (6.5.19) of Reference 2 the cross-
correlation between Fy and F, was inadvertently
omitted, and a different result is given).

It is a simple matter to obtain the spectral density of
the phase fluctuation since F, is not correlated with oN.
The result is the same as in the main text (again with
& = 1), except for the term 1/4P which must be added ad
hoc to the SRE result, as we discussed above. We have
verified that all the expressions given in the main text,
including the cross-correlations, are the same as those
that can be derived from the above SRE if ¢ = 1, and the
amplitude and phase prescriptions discussed above are
made (addition of P and 1/4P to the power and phase
-spectral densities, respectively).
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