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Abstract. — The amplitude noise of a laser diode submitted to electronic feedback is evaluated
using a new circuit theory. It is postulated that the electron-hole injection rate equals the
photon generation rate at any time, and Nyquist-like noise sources are introduced. Previous
results based on quantum mechanics are recovered. It is found that the amplitude fluctuations of
an optical beam in the coherent state can be squeezed below shot noise by feeding back the
driving current of a laser amplifier.

-~ Machida and Yamamoto[1] have proposed and verified that the fluctuations of the
eurrent injected in a diode can be reduced below shot noise by use of a large resistance in
series with the driving circuit. If the injected current does not fluctuate, the total optical
power does not fluctuate either under ideal conditions. Fluctuations are observed, however,
if only a fraction of the output power is collected. This can be understood by assuming that
each photon behaves as a classical particle [2].

When the laser diode output power does fluctuate, one could hope that the fluctuations of
the photons originating from one side of the laser (say, side 1) would be reduced if the optical
power from the other side is detected, and the amplified detected electrical current is fed
back into the diode (fig. 1a)). Theory and experiments, however, show that only fluctuations
of classical origin can be reduced by this arrangement.

The electronic feedback problem is investigated here with the help of a cireuit laser-diode
theory [3] conceptually different from the semiclassical theories offered in [4,5] that
postulate initially a Poisson distribution for the laser photons. We postulate instead that
(classical) Gaussian noise voltages of speetral density [R| (where the bars mean: «absolute
value», and appropriate units are used) are associated with (positive or negative) electrical
resistances R, according to the fluctuation-dissipation theorem for quantum noise. This
approach has been used before by Reynaud and others [6] for parametrie oscillators and by
Nilsson and others [7] for laser diodes. The particle rate equations, in which we are eareful
to include the noise sources, however, were not explicitly accounted for in [7]. The formulae
in[4, 5] as well as quantum-mechanical results are recovered. The theory presented here is
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Fig. 1. — a) Laser diode with two outputs 1 and 2 and two absorbers of radiation (taken as ideal
detectors). The current from detector 2 may be amplified and added to the laser driving curre

through the switeh S. b) Equivalent electrical circuit. The voltages Vi(2), k=0, 1, 2 are white Gaussian '

random processes,

simpler than previous theories. Its principle will be first explained in the absence of
feedback and at zero base-band (or «Fouriers») frequency.

For the sake of simplicity, rather ideal laser diodes are considered that do not suffer from
internal losses, operate much above threshold, have a quantum efficiency equal to unity and
complete population inversion. We also assume that the diode can be represented by a single
negative resistance and a reactance, that is its internal structure is ignored,

The circuit in fig. 1b) consists of a negative resistance Ry= — R modelling the active part
of the laser in series with two positive resistances R, and R; modelling perfect absorbers of
radiation located on both sides of the laser. These absorbers are taken to be ideal detectors
whose output currents reflect the power fluctuations of the corresponding output optical
beams. An L-C cireuit in series (not shown in the figure) resonates at the optical frequency v,
given by: LC (27, = 1. It is not difficult to relate the circuit parameters L, C, R, R; to the
diode length and mirror reflectivities.

Gaussian voltages whose spectra can be considered white over a small range of optic

frequencies are inserted in series with the resistors according to the fluctuation-dissipatios

theorem [8]. For the narrow-band processes considered here, it is eonvenient to introduce
complex random voltages (see, for example, [9]) V(1) = c.(£) + is(t), k=0, 1, 2. The double-
sided spectral densities of ¢, and s, (expressed in root-mean-square values) are

(Sm)k = {Sa-s k= h\’oiRkl (1)

and the cross correlations vanish. The complex random voltages V,, Vi, V, relating to R,
R,, R,, respectively, are shown in the figure.
Next, let us equate particle generation rates

Jele=Ri|IPlhv; k=0,1,2, )

where the J, denote outgoing electronic currents, the detected output currents J, and J,
being positive, while the current J; injected into the active element is negative. «e» denotes
the absolute value of the electronic charge and hy, the photon energy. «I» denotes the r.m.s.
current flowing in the circuit,

Consider now small and slow changes j, of J, and 7, of R,, and let ¢ denote the relative
change of |I[*. The variation of eq. (2) gives

jk='rk+PRk; kzo, 1:29 (3)
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where we have set for brevity, without loss of generality: e = hy, = 1, and the average value
of I is also set equal to unity. For the passive resistances B,, R, the variations 7, 1s reduce
to the real parts ¢,, ¢. of the random voltages. For the variation r, of the active resistance R,
there is in addition to ¢, a variation due to a change in carrier number which, however, we
need not caleulate explicitly.

The R, values now stand either for the average resistances or the average rates of carrier
or photon generation. They satisfy the relation

RU+R1+R2=0 or R:—:_RU=R1+R2. (4)

Slow changes of the oscillator frequency must be real. Otherwise the amplitude
fluctuations would be unbounded. This entails that the total circuit resistance vanishes at
any instant of time

?’0+?"1+‘}"z=‘-0=1‘0+0;+63=0. (5)
If 7, from eq. (5) is introduced into eq. (3) with % = 0, we obtain
e=—(h+to+c)R (6)

which can be substituted into eq. (3) with k=1, 2 to obtain the fluctuations J1, Js of the
currents flowing out of detectors 1, 2

h=¢,—(R/R)jo+ ¢, +¢3), (Ta)

Je =~ (Ro/R)(jo+ €1+ ¢3). (7b)

Notice that jj + j, + j.= 0, as initially postulated. The ¢, and ¢; processes are uncorrelated

and their spectral densities given in eq. (1) are, respectively, R, and R,. In the absence of
injected current fluctuations (j, = 0) and feedback the spectral density S, of j, is therefore

= Si=(1-R,/R}R, + (R,/R’R>=R\(1 - R,/R) ®)

and S;=S,. Equation (8) shows that S1=0 only when detector 1 collects all the power
(B, = R). If j, exhibits full shot noise, one must add according to eq. (7) a term (B,/R)*R on
the right-hand side of eq. (8), and then S;=Ry; S; = R, (full shot noise).

The spectral densities caleulated above apply only to vanishingly small base-band
frequencies f. Let us assume for simplicity that the injected current is large so that the
relaxation oscillation frequency is much larger than the cold cavity cut-off frequency:
Jo= R/2zL, where L denotes the circuit inductance. Then the term dN/dt in the carrier rate
equation can be neglected, where N is the carrier number, and the photon generation rate
remains equal to the carrier injection rate. However, the photon absorption rate is no longer
equal to the photon generation rate because of the electromagnetic storage in the cavity
modelled by the L-C circuit. We maintain that the total cireuit impedance Z(v), and
therefore the real part of its first-order variation, vanishes at any instant of time. The
optieal frequency v is here a complex function of time whose imaginary part, v; << v, is related
to ¢ by: 4zv; = d¢/dt. When j, =0, the spectral density S, of j; at the baseband frequency f is
found to be (see the Appendix; a related calculation was presented in [10])

Si/Ry =1~ (R./R)[1+ (fIf,?]. )

It reduces to the value given in eq. (8) when f <« f;, and to full shot-noise (S, = R,) whenf>> f.
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Most authors consider a power-division system that seems at first to be quite different
from the one shown in fig. 1a): the laser diode has only one output port, but the output beam
is split by a beam splitter. This beam splitter exhibits an unused port (labelled by 3) that
does not appear in fig. 1a). The transmission-line analog of a beam splitter is a directional
coupler. We find it convenient to set the characteristic impedance equal to unity. Thus
R = 1. The principles outlined above show that the fluctuations of the current from the two
detectors are

Ji==I[Ri(1—-R)I"*s3— Ryj, (1002
J=[R1 - R8s~ (1 - R, (1bey

where R, and 1-R, denote the beam splitter power reflection and transmission,
respectively. Because the spectral density of the imaginary component s, of the noise
voltage from the unused port 3 is unity (with the new convention) as well as those of the
uncorrelated processes ¢, and ¢, eq. (10) gives the same observable fluctuations as eq. (7).
This conclusion would not hold, however, if a squeezed vacuum were introduced at the
unused port. The configuration presently discussed is the balanced homodyne optical
receiver represented for example in fig. 3.8 of [11], when j, is subtracted from j, and R, = R,.

If j, exhibits full shot noise, that is, if the laser generates a coherent state, 7, and 7, also
exhibit full shot noise and are uncorrelated, a conclusion that holds as well for the
configuration represented in fig. la).

Let now the current from detector 2 at baseband frequency f<<f; be multiplied by the
complex number F(f) and added to the laser driving current exhibiting full shot noise
(So=R). After some algebra, the previous equations lead to

S\/Ry=1+ (RIR, — 1)|1 — RIFR,|™2. (11)

Equation (11) shows that the spectral den‘sity of the usable photons exceeds that of she*

noise for any value of the complex number F. Except for a change of notation, eq. (11) is t S

same as eq. (90) of [4] with n=1.

We have found, however, that when R, is negative and acts as a (linear, phase-
insensitive) optical amplifier of gain G a similar feedback arrangement can lead to an
amplitude squeezing of light initially in the coherent state. This can easily be understood
intuitively for large gains: the current injected into the optical amplifier is the difference
between the output optical power and the input optical power, but the latter is negligible for
large gains. To prevent the output power from fluctuating it therefore suffices to suppress
the injected current fluctuations with the help of a large cooled series resistance in the
driving circuit following the concepts in ref. [1], or, equivalently, by introducing an optimum
feedback. We find that for a gain G the optimum feedback factor is (1 — 1/2G)™*. The power
fluctuations of the outgoing beam are then those of shot noise multiplied by the factor
1/(2G — 1)< 1, that is they are squeezed.

APPENDIX

Let us first establish that the real part of the first-order variation of the impedance Z(v)
of the circuit represented in fig. 1b) (the reactive part is not shown) is

it ot ry+4xlyi=0, (A.1)
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where 7, = 3R, includes both a variation due to a carrier number change a_nd tl}e real Part of
the noise source V, (divided by I=1). A complex frequency variation dv(f)= v ) +
+ iv;(f) < v, perturbs the impedance Z by the amount

8Z = 3(R +1X) = (dR/dv + 1(dX/dv)) (v, + iv), (A.2)

to first order. Because dR/dv=0,
Re[8Z] = — (dX/dv) ;. (A.3)

‘or the LC circuit considered, dX/dv= —4xL and we thus o‘ptain eq. (A.1).
From the definition of the complex frequency (applicable to time variations that are small
within an optical period)

1(t)=I(0) exp (— 2 j PO dt). (A.4)

Therefore 4nv; = de/dt, where o= 3|I*/|I. _ e
%y Fouri::l-tradgsfo;-nﬁng the slow fluctuations, de/dt = — 2xife. The relation in eq. (A.1)
becomes
¢+ ¢y +7y=2miLlfo. (A.5)

The derivation now follows as for the case f=0, since eq. (3) is unchanged. Namely

Jot+ €1+ c=(—R+2xiLf)p. (A.6)

When ¢ from this equation is substituted into
fi=¢ +eRy, (A.T)

we obtain ‘
j1= 61— (Ry/R)(jo + €1 + )1 = #fifo) (A.8)

where f; = R/2zL. The spectral density of j, given in eq. (9) of the paper follows readily from
the above eq. (A.8).
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