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Abstract: The whispering-gallery modes of cylindrical dielectric resonators of high permittivity (e, ~ 38) are
investigated, Axial-mode confinement is ensured by a slight increase in the rod diameter. The resonances for
various azimuthal mode numbers and the two states of polarisation are identified experimentally. There is a
good agreement between measured and calculated frequencies. The measured quality factor, of the order of
7000 at 6 GHz, is, for some resonances, limited only by the intrinsic loss of the dielectric material. The
whispering-gallery mode of resonance enables designers to use comparatively larger-size dielectric resonators
at millimetre-wavelengths with good frequency selection and low loss.

1 Introduction

High-permittivity resonators have been studied in detail in
recent years as useful microwave filters [1, 2]. This type of
resonator offers the advantage of a small size and a good field
concentration that facilitates coupling to active devices. The — A
quality factor of a dielectric resonator is limited, on the one
hand, by the intrinsic loss of the material and, on the other
hand, by radiation losses.

For the high permittivity materials that are currently 1
_ available, the intrinsic Q-factor is usually of the order of 7000. |
But this is often reduced to 3000 or less by radiation
mechanisms. e

The mode of resonance that is under investigation — the —| '1 z

whispering-gallery mode — was first discovered in the field of 22 i
acoustics by Lord Rayleigh [3]. This mode can be described as
comprising waves running against the concave side of curved
boundaries. In the present situation where we consider circular
dielectric cylinders, the waves move essentially in the plane of
the circular cross-section, and are confined by the dielectric-air
discontinuity. From a ray-optics point of view, one can say
that the rays are totally reflected at the dielectric-air boundary. 1
More precisely, the wave is essentially confined between the
cylindrical boundary and an inner caustic whose radius can be
calculated from a modified ray-optics technique. The ray
theory, however, proves insufficiently accurate for the present el
device. Therefore, the theory presented in this paper will be
based on the well known exact formulas for the modes of
propagation along dielectric cylinders in free space [4]. Let us  Fig. 1A Schematic view of dielectric resorator
recall that these modes are defined by an azimuthal mode
number that we shall denote u=1, 2, ..., and a radial mode
“number denoted @ =0, 1,2 .. .. The theory provides the pro-
pagation constant & along the cylinder axis at some real angular

frequency w.
As a first approximation, the resonant frequencies of the @

dielectric resonator presently considered are obtained by
setting h=0 and looking for w, u being a large integer.
(Strictly speaking the w solution is complex but we shall ,¢mm 21 mm
neglect the imaginary part.) Note, however, that we are in-
terested in waves that remain confined to a small region in the
axial direction. This axial confinement is achieved by slightly
increasing the diameter of the dielectric rod in some central
region. In that configuration, the field of the resonant mode
decays exponentially in the axial direction on both sides of the
enlarged region. A simple theory that accounts for the axial
confinement consists of matching the field and its first derivative
at the diameter discontinuities as was carried out in References
S and 6. As we shall see, these theoretical results are in good
agreement with the experimental results, for both states of
polarisation.
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The whispering-gallery mode of resonance of high-permit-
tivity dielectric resonators appears to be mostly useful in the
millimeter-wave region, where more conventional dielectric
resonators are impractically small. In spite of their large size,
whispering-gallery-type resonators afford good suppression of
spurious modes (e.g. modes with radial numbers & > 0) because
these unwanted modes leak out axially and are absorbed with-
out perturbing much the desired modes. On the other hand,
radiation losses are found to be almost negligible in the wave-
length range considered, the quality (Q-) factor being almost as
high as that of the intrinsic material, of the order of 7000 at
6 GHz.

These WG modes can be excited, for example, by synchron-
ous external travelling waves supported by slow wave structures.
In particular, we have experimented with a meander line
photoetched on copper-plated Teflon.

In this paper, we shall first clarify the mode terminology;
then describe the geometry of the resonator and the experi-
mental results (resonant frequencies and O-factor); finally we
present the details of the theoretical analysis.

2 Mode denomination

The resonator geometry is shown in Fig. 1A. As explained in
the introduction, this is basically a dielectric cylinder of radius
a. The radius is reduced from a to @; <a over an axial length
2d. The mode denomination that we use is palp, where
denotes the azimuthal mode number, « the radial mode
number, / the axial mode number, and p (or pol) denotes the
polarisation state. The basic propagation mechanism is recalled
in Fig. 2 in a ray-optics representation: a ray is totally reflected
at the dielectric-air boundary. It is tangential to a smaller circle
of radius b called the caustic. By keeping track of the optical
phase (k dl, if k = (w/c)/e, and dl is the ray length element)

') caustic radius b

Fig. 2A  Ray-optics view of whispering-gallery-type mode of resonance

Fig. 2B Schematic representation for field at azimuthal mode number
p=2
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along either the caustic or a ray, an approximate expression
for the resonance condition can be obtained. In particular, we
have 2wbk =pu, where p denotes, as indicated above, the
azimuthal mode number.

From a wave-optics point of view, u is the number of wave-
lengths around the cylinder, as shown schematically in Fig. 2B.
This number is, of course, independent of radius. The phase
velocity of the mode in the azimuthal direction increases in
proportion with radius, as is the case for rotating wheels. Note
further that g is a positive or negative integer, depending on
the sense of rotation of the ray. However, because the dielec-
tric medium is isotropic, the resonant frequencies are the
same for + i and — g. In other words, these two modes are de-

generate, (The degeneracy would be lifted (wy # W_y),e.g. if

the cylinder were submitted to an axial twist, through the
photoelastic effect, i.e. the effect of strain on the permittivity
tensor. Such strains preserve the invariance of the system
under rotation.) It is therefore permissible to superimpose
these two modes to generate cos p¢ or sin pé dependence of
the field on the azimuth. As a matter of fact, most of our ex-
periments were made with electric or magnetic probes that
excite such field variations. However, we have also experi-

Fig. 2C  Radial field variation for spurious mode « =1

s

Fig. 2D Axial field variation for spurious model = 1
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Fig. 2E  Definition of polarisation states
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mented on travelling-wave excitations capable of exciting
independently either exp (iug) or exp (—iug) field variations.
We are mostly interested in high u values.

The integera =0, 1,2, . . . denotesthe radial mode number,
i.e. the number of field nodes in the radial direction. In a very
simplified model we may assume that the field is described by
Bessel functions J, (kr) that vanish at the boundary r =a. The
« = 0 mode is such that the J, (kr) function has no zero from
r=0 tor=a The &= 1 mode corresponds to one zero, and
so on, as shown in Fig. 2. We are mostly interested in @ =0
modes. The other & values are viewed as being spurious.

The integer /=0, 1, 2, . . . denotes the number of zeros
(nodes) of the field in the axial direction. Thus, the sym-
metrical fundamental solution corresponds to [ = 0. The first
antisymmetrical mode corresponds to /= 1, and so on. We are
mostly interested in the | = 0 modes, the other values being
viewed as corresponding to spurious modes.

Finally, there are two possible states of polarisation of the
electromagnetic field that we shall denote p = 1 and p = 2.
For a wave motion strictly in the plane of the cross-section,
the Maxwell equations show that either £, = 0 (p = 1) or
H, =0 (p = 2). In the former case, E is radial, and the mode
can be excited by a small dipole antenna directed along the
radial direction, In the latter case, £ is axial, and the mode is
most conveniently excited by a loop whose axis is oriented
along the azimuthal direction.

The detailed electromagnetic theory has been relegated to
Appendix 7.

3 Experiments

The geometry of the dielectric resonator is shown in Fig. 1B
and the experimental set-up is shown in the photograph in
Fig. 3. The dielectric resonator has a total height of 50 mm.
Absorbing plates are located at both ends to absorb spurious
modes that leak out from the central region.

The resonator is excited by a scanned microwave source

and a short electric dipole. Similarly, the output is a short.

dipole and a broadband detector. For each resonance, one
verifies that the field is concentrated near the enlarged section,
and decays away from it.

The azimuthal mode number u is determined unambiguously
by rotating the detector probe around the cylinder axis. Finally
the state of polarisation (p = 1: E along r;p = 2: E along ) is
also unambiguously determined by using either an electric
dipole or a small loop. Except for some unidentified signals at
strong couplings, only the desired whispering-gallery-type
resonances are observed, for all u values from 1 to 9 and
beyond. The Q-factor of a resonance is measured, as usual,
from the 3 dB width at low coupling. The experimental results
are summarised in Table 1. For the two polarisation states, we
have shown in the Table the calculated resonant frequency, in

Table 1: Comparison between calculated and measured resonant fre-
quencies for various u values

u 3 4 6 6 7 8 9

F (GHz)

theory 362 425 487 547 605 6.63 7.21

F (GHz) E;~0
exp. 3.71 437 5.02 563 6.25 682 7.44 p=1)
a 1000 4120 3920 5410 4140 4110 4300

F (GHz)

theory 2856 354 4.19 479 540 6.00 6.59

F (GHz) Hz~0
Sip. 306 3.77 445 510 574 635 696 ((p=2)
(o] 1600 5990 7070 6200 6100 4670 5234

Measured Q-factors le, = 38, 22 = 30mm, 28, = 26 mm, 2d = 8mm)
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Fig. 3 Photograph of experimental set-up

gigahertz, assuming e, = 38, the measured resonant frequency,
and the measured Q-factor.

The agreement between the approximate calculation, given
in Appendix 7, and the measured values is fairly good. Part of
the difference may be due to some uncertainty in the value of
¢,. As far as the Q-factor is concerned, the intrinsic Q; of the
material is said by the manufacturer to obey a law Q;f =
40000 in the relevant range of frequencies. Thus, at 4.5 GHz,
0Q; = 8800. The measured value Q = 7070 is close to it. This
indicates that the radiation losses are small. At higher fre-
quencies, the Q-factors drop, presumably because of increasing
material losses. At lower frequencies, it also drops, presumably
because of increased radiation losses.

4 Conclusion

The whispering-gallery-type mode of resonance in high-permit-
tivity dielectric resonators has been observed unambiguously.

The resonant frequencies are in good agreement with values -

calculated from an approximate theory. The Q-factors are high,
about 7000, and probably limited by material loss. Because of
the high modal purity, this type of resonator should be useful
as a filter element in the millimetre-wave range of frequencies.
A number of such resonators can be coupled together either
axially, with a number of enlarged sections along a single rod,
or by placing them side by side, to get sharper band edges.
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Table 2: Calculated resonant frequencies for various u values (columns)
and various a, / and p mode numbers

a, /, pol
” 001 002 011 012 101 102 111 112

2 294 212 471 375 411
3 3.62 286 540 4.53 4.96
4 425 354 6.06 522 5.71
6 427 4.19 6.71 597 6.54
6 547 479 7.36 6.61 805 7.20
7 6.06 5.40 580 796 7.26 870 792
8 663 6.00 7256 €658 857 780 9.35 882
9 721 659 780 726 9.19 852 1002 826

10 7.76 7.16 850 782 979 974 1068 996

€.=38,2a=30mm,2a, =26mm, 2d = 8mm
Blanks correspond to nonresonating modes (the modes leak out axially)
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7 Appendix: Detailed theory

The object of this Section is to determine the resonant fre-
quencies of the dielectric cylinder shown in Fig. 2, with its
enlarged diameter, The dissipation loss of the high-permittivity
dielectric cylinder will be neglected here (tan & ~0). All
dielectric resonators exhibit radiation losses. When the resona-
tor size is comparable with the wavelength in the material,
these radiation losses significantly reduce the usefulness of
the resonator as a filtering circuit element, But as the resonator
size gets larger and larger, the radiation losses are drastically
reduced for some modes. In considering the whispering-gallery-
type modes than run along the dielectric cylinder boundary,
and cylinder diameters large compared with wavelength, the
radiation losses are indeed very small, In this Section, we shall
neglect the radiation losses, and concentrate on the calculation
of the real part of the resonant frequencies.

Let us consider first a uniform dielectric cylinder of radius
a, and relative permittivity €, > 1, immersed in free space. We
consider propagating modes of the form

E(,¢,z,1) = E(r) exp {i(u¢ + hz — wi)} n

where the E(r) function is concentrated near the cylinder
boundary r = a. The exact analytical relationship that exists
between ¢ and h, for some azimuthal mode number u, is well
known. We have

( +ma)(emy +m2) = PR (/) @ +w?) (2)
where

= Ju @)y @2 = Ky W)/{iwK, (w)}
and

fa)® = (wle)* e, —h*;(wla)*? = h* —(wlc)? (2b)

As a first approximation, we assume that # = 0, i.e. we neglect
the axial motion of the waves. The w solutions of egns. 2,
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rigorously speaking, are complex because w is imaginary. How-
ever, neglecting the radiation losses, we can take the real part
of both sides of eqn. 2z and find approximate real values for
w, ignoring the small imaginary parts on both sides of eqn. 2.

Under the A = 0 approximation, the left-hand side of eqn.2
splits into two equations, one for each state of polarisations. A
detailed analysis shows that the equation

m+m=0 (3)

corresponds to an electric field directed essentially in the
radial direction.The other equation

&m+tm =0 (4)

corresponds to an electric field directed essentially in the axial
direction, In that way, one gets two sets of resonant fre-
quencies Fy, one for each polarisation state,

To account for the central cylinder enlargment, we need to
consider small, but nonzero, values of h. Using a numerical
technique we make a plot of the frequency F as a function of
h* for some permittivity €, and cylinder radius . Such a curve

is shown in Fig. 4, for ¢, = 38 and 22 = 30 mm. For small A,

this curve is essentially a straight line that can be written in the
form

F=Fy+0h (radius a) &)

where Fy and 0 are constants.

e i’ / f ihd 2
H P | L 1

2 1 0 1 2

l;lz. 4 Variation of frequency of source exciring uniform dielectric
Fi

€, = 38, rod diameter = 30 mm (lower line) and rod diameter =26 mm

(upper line) as & function of the square of the propagation constant h.
Negative values of h? (denoted here h'®) correspond to evanescent
waves. For the enlargment width 2d = 8 mm, the resonant frequency is
given by the horizontal line. The electric field is essentially radial: mode
4001.

2a:=26mm

T

G- resonant frequency

Fig. 5  Similar to Fig. 4 with electric field essentially axial: mode 4002
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Fig. 6 Calculated resonant frequencies for azimuthal mode number
u=4 and a=0or 1,1=0orl, and two polarisation states, as function
of enlargement width 2d

These curves enable us to select 24 in such a way that « + 0, 1 # 0
modes do not resonate, or are strongly attenuated.
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For propagating waves h* > 0. However, we shall later be
interested also in evanescent waves that correspond to A* < 0.

If the cylinder radius isa; = a/a with a # 1 instead ofa, we
need not perform the calculations again. Using simple scaling
laws, we find that the relationship

F = aFy, —(8/a)h'? (radiusa, = a/a) (6)

holds, where we denote the axial propagation constant k'
instead of ik for later convenience.

Let us now consider the geometry in Fig. 1A, The cylinder
has radius @ in the central region over an axial length 2d, and
a smaller radius @, (a > 1) outside that region. The approxi-
mate technique we have used consists of matching the field
and its first derivative at the discontinuity. Taking the origin at
the centre of the enlarged section, for symmetrical modes, the
field has the form

V(z) = A cos (hz) lzI<d (7a)
Y(@) = Bexp(—|h'|2) Iz >d (7b)

The resonant frequency F is such that A2 > 0, A’ > 0
(evanescent waves). By matching Y and dy/dz at z = d, and
using the law in egns. 5 and 6 found from the numerical solu-
tion of eqn. 2, we find the resonant frequencies F by solving
the equation

fF;Fo d tan (,/}%' ‘d)—,‘/:— @Fo—F)d=0
(8)

A similar relation can be obtained for antisymmetrical modes.

Plots of the F(h?) lines are shown in Figs. 4 and $ for radial
and axial electric fields, respectively. The resonant frequencies
of various modes of low order are shown in Fig. 6 as a
function of the enlargment width 2d.
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