USE OF PRINCIPAL MODE NUMBERS
IN THE THEORY OF MICROBENDING

Indexing terms: Optical fibres, Optical waveguide theory

The modal theories of microbending that have been proposed
so far postulate that modes that have the same principal mode
number carry the same optical power. This assumption is
shown to be incorrect. The exact result is given.

The precise calculation of the effect of random bends on the
transmission characteristic of multimode optical fibres remains
of great practical interest. Following a proposal made by
Gloge,! the modal theories of microbending available today
postulate that modes that have the same principal mode
number carry the same optical power. The principal mode
number is defined as twice the radial mode number plus the
azimuthal mode number. (See, for example, References 2
and 3) The purpose of this letter is to discuss the validity of
this assumption.

It is asserted® that modes that have the same principal
mode number have nearly equal propagation constants, and
that therefore they are tightly coupled to each other and
behave as one mode group, labelled m. We will argue that
modes that have the same principal mode number do not have
the same propagation constant, even approximately, with the
sole exception of fibres with a square-law profile, and secondly
that even if the modes were degenerate they would not couple
to each other. Finally, we will give the exact result.

Let us first consider the assertion that modes that have
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the same principal mode number are nearly degenerate,
restricting our attention, as most authors do, to fibres that
have a power-law profile

1 — n(r)n(0) = Alrfr.)** (1)

where the parameter k is equal to unity for square-law profiles
and to infinity for step-index fibres. The other quantities have
their usual meaning. [t is well known that, within the WKB
approximation, the spacing in propagation constant between
two adjacent modes that have the same azimuthal mode
number is equal to 2m/Z, where Z denotes the axial ray period,
and the spacing in propagation constant between two adjacent
modes that have the same radial mode number is equal to
@/Z, where & denotes the azimuthal ray period (see Reference
5, eqn. 4-298). Thus degeneracy occurs only if ® =m. But
consider, for example, a step-index fibre. A ray trajectory,
proiscted on a plane perpendicular to the fibre axis, obeys
the usual law of reflection at the circular core-cladding inter-
face. and clearly the azimuthal ray period can take any value
from O to m. The latter value is applicable only to the
exceptional case of meridional rays. It is only for square-law
profiles that & = = for all rays.

Let us see now whether, at least for square-law profiles,
the concept of mode group can be used. Degenerate modes
would carry the same optical power if they were tightly
coupled to each other as a result of the random bending of
the fibre axis. But in fact they are not coupled at all because
of the existence of selection rules. The curvature C of the
fibre axis in the x-z plane, where z denotes a co-ordinate along
the fibre axis, is equivalent to a perturbation of the refractive
index®

An=Cx = Crcos¢=Cre'® + e '®)2 (2)

in an r, ¢, z cylindrical co-ordinate system. It follows from
eqn. 2 that two modes are coupled by the bends only if their
azimuthal mode numbers differ by plus or minus one. But this
is never the case for two degenerate modes. Indeed, let y, o
denote the aximuthal and radial mode numbers of one mode,
and y', o denote the azimuthal and radial mode numbers of
the other mode, If these two modes are degenerate

2a+u=2a +u' (3)
and therefore
p—u'=2c —a) (@)

is never equal to plus or minus one.

Degenerate modes may be coupled by fibre distortions
other than bending. However, even for such distortions, the
tight-coupling approximation requires that the power spectral
density of the curvature process at zero spatial frequency be
infinite, or at least very large. We are unaware of plausible
defomation mechanisms that would satisfy this condition,
We thus conclude that the concept of degenerate mode groups
in the theory of microbending should not be used.

The exact result is exceedingly simple.® From either
ray theory or by applying the WKB approximation to the
coupled mode equations, we have found that the power Q
in mode u, a at z obeys the following partial differential
equation:

Qg o
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where d;, i=0, 1, 2 are functions of u and a. If the fibre
distortion is due to random bending, the d; are given by
the following expression:

di=¥2 Y s'F, G, (6)
$

where k denotes the propagation constant on axis:
k = (w/c) n(0). The summation is over all integral values of
5:0, £ 1, £ 2, ..., and G, denotes the spectral power density of
the curvature process at the spatial frequency

w=(s+ d2n)/Z ()

The curvature process is assumed to be stationary and to have
the same statistical properties in every meridional plane. The
F, are Fourier coefficients defined with respect to a ray
trajectory in the straight fibre, r(z), ¢(z):

z 2
F,= L p(z) exp (- 2miuz) dz/Z| | p=re'® (8)

and u is defined in eqn. 7. Both F; and G are functions of
#. o and the integer 5. The above results are valid for any
curvature spectra and any index profile n(r).

For the special case of square-law profiles, the F; are all
equal to zero, except

F_y = (Z[km)a; Fo = (Z/km) (4 + @) &)

In the present case, the axial and azimuthal ray })eriods Z, P
are constants, equal, respectively, to mr,/(24)'? and n. It
follows that, in the expression in eqn. 6 for the diffusion
coefficients, only the value of the spectral power density
G at the spatial frequency 1/2Z enters, We shall call this
value y. This result confirms our previous argument based
on the selection rule, that the value of the curvature spectral
density at zero spatial frequency, whether large or small, is
irrelevant.

To make our argument more precise, it is convenient to
write the diffusion equation eqn. S with the d; as given above
for the square-law profiles, as an equation for P(m, u, z),
where m = 2a + u is the principal mode number. The result
of the transformation is

(2V(2A)/k i mPrym +
- vkre) a2y Tmm 2Pm+2npmu+mppp (10)

where subscripts denote partial differentiation with respect to
m or i Statistical modes are obtained by setting the derivative
of P with respect to z equal to — AP, where ) represents the
microbending loss, with the boundary condition '

P(/(28)kre/2, 1) = 0.

Some of the statistical modes are in fact independent of u;
this is the case, in particular, for the fundamental solution.
But most of the statistical modes do depend on u. The exact
form will be given elsewhere. In other words, the statistical
modes in bent squarelaw fibres do not satisfy the condition
postulated in most recent works that degenerate modes carry
equal power. The fact that this condition holds for some of
the statistical modes is coincidental.
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