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I Transverse Modes on Infinite Arrays of Bars

W will study i this section the electromagnetic waves which can be
pinded by an oareay of paraliel eylindrical conductors directed along Oz.

\ preat number of practically interesting structures for crossed-field
frnvelingg wave tubes ean be considered as resulting from the junetion of
oy uniform sections constituted by such arrays. The computation of
ot dispersion characteristies and of their coupling impedance can be
de in o somewhat general way, after the study of the uniform array.

Lot us consider an array of infinite eylindrical conduetors ealled “bars”
diveeted along Oz, If they are immersed in a medium of constants ¢ and
poover all space, transverse electrie and magnetic waves can propagate
plong the bars (1), For these modes of propagation to which we limit
surselves Maxwell’s equations and the boundary conditions are satisfied
by the fields E and H1f
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hin the constant of free propagation in the medium, ¢, will be called the
||u|r'||l|.'i|. (it must be constant for given » and ¢ on the surface of any bar),
e 1V owill be the potentinl of the bar for these vilues of © and £
The integral of 1 on a contour enclosing one and only one bar and drawn
in a plane of constant & will be called the enrrent of that bar,

The general equations of multifilar lines can then be written (2) for any
array of parallel conductors,

Vi = A, cos ke + B, sin kx

I = —jsinkz T cymulpm + jcos ke S e¥moDm (3)

L

= § (2)

where n and m index two given bars, and the sum extends to all the bars.
The v, coefficient, is the capacity per unit length between bars m and »n
(unless otherwise mentioned we shall always deal with capacity per unit
length in this paper), and A and B are arbitrary complex coefficients. The
problem of the determination of the y,..’s is & two-dimensional electrostatie
one and it will be studied later on, but it is sometimes easier to measure
them, say, in an electrolytic tank.
) The rms electrical energy stored per unit length on the nth bar is given
¥
Un = 3VaZ vuu V2 (4)

I; Ty is the corresponding magnetic energy it is possible to show from (3)
that
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is independent of .

Il. Periodic Array

) We consider now an elementary cell consisting of N infinite bars and use
1t to generate an infinite array by translations

lp1 + mps (6)

where p; and p; are two vectors of the plane Oyz, and [, m are integers
taking all the values 0, 41, 42, . . . (Fig. 1).
. We have here a double periodicity. In the usual cases (helix, interdigital
line) we have one periodicity and p, = w, [pil = p. Since the interaction
due to the double periodicity is only formal and can be useful for some
new structures, we treat here the general case.
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The N bars of the fundamental cell will be indexed by r or by
I 1,2, ... N. The cells are indexed after the definition of the array by

AL,
A

e 1. Biperiodie bar type structure in the case N =2 bars in cell. p; and pe
dofine the periodicity; the fundamental phase shifts for a given mode are @

nnil s

(I, m). Let us call %" the capacity between the bar r of the cell (0, 0) and

the bar R of the cell (I, m); we observe that

Y =l ™ (7)
Then, we define N? characteristic admittances (3) by
Ye=c IE vii exp [—j(ler + me) ] (8)

where ¢1 and ¢ are the fundamental phase shifts along p; and ps for a
given mode; ¢ and ¢» can be introduced by Floquet’s theorem; and ¢ is
the free propagation velocity.
I'rom (7) we have
YrR = Y..."'Er {9)

(the asterisk indieates the conjugate value). Then, V., can be written:
Y,,=4dc 3 [|v&")sin? [M] +c 3 T |vi (10)
Lo >0 2 Rer bm
In the case where the bars R = p of each cell are connected together, they
will be called the “ground” of the structure. For conciseness, we put

Z ™l = % ()

y. will be called the capacity between the rth bar and the ground. The

vharacteristic admittances Y are useful for one can use with them the multi-

filir line transformation formulas which give the voltages and the currents

ol a bar, in a cell, at z = 0, from their values at x = d, in the same cell.
[|[V(0)|| = cos kd||V.(d)|| + j sin kd||Zz|| -||Tr(d)]|

[1-(0)|| = cos kd||IA(d)| + j sin kd||Yrxl| - [|Ve(d)|| (12)
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with _
[ Zel| = || Yerl[™*

We will apply these relations to a very simple case; we have one periodieily

(p: = =), and two bars only in a cell, one of them, namely i = 1, consti-

tuting the “ground,” the other, namely R = 2, is referred to as the bar.
We are only interested in ¥V = ¥, which can be written

; [
Y=cvo—22v"+2 T vPcoslp =cyo + 4¢ T [v?¥] sin’ (E)
=0 IS0 >0 2

(13)
Relation (13) becomest
- . fsin kd
V(0) = cos kdV(d) + j (T) I(d)
1(0) = cos kdI(d) + j(sin kd) YV (d) (14)

In this simple case v 1s used for vy, and 4V or 4’ for yu.''¥

lll. Calculation of the Characteristic Admittance
and Space Harmonic Intensity

A. TAPE STRUCTURES
In this section we consider a structure which has great theoretical inter-
est. It consists of infinitely thin bars in the same plane (see Babinet’s

Y
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Fia. 2. (a) Tape structure of pitch p and gap ap; the origin of the cordinates is in
middle of a gap. (b) Thin wire structure of pitch p; the radius of the wires is
g << p; the origin of the coordinates is in the middle of two adjacent wires.

principle discussed in the previous Section 2.1 by this author, and Eq. (11)
of that section). Its great interest is that it is possible, in this case, to ob-

1 This results from the infinity of the capacities between the “ground” bars.
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tain exaet solutions for the fields, the characteristic admittance, and the
cocflicients v,

Such o strueture 1s shown in Fig. 2(a). It is obvious that in the plane of
the stracture (y = 0) the field is directed along Oz in the gaps and along
Oy in the eonductors. It can be shown (4) that it varies as:

exp Lilr — o)e/p] -
(p/m)[sin? (xa/2) — sinf (xe/p)]" o
where ap is the gap width, the origin z = 0 being at the middle point
between two adjacent bars. The field varies at the tape edges as
(v — ap/2)7V2 Now, for simplicity, we shall consider only the case where
o~ & (zap width equal to the tape width),

exp [i(r — @)z/p] (16)

E:0,2) =

E0;2) = [cos (2rz/p)]r?
|l us suppose that the potential of the tape which is just at the left of
(he origin is e'%; the integral of E. from z = —ap/2 to ap/2 must be
vaual to 27 sin (¢/2). Then, we have
. 2jsing/2 V2 I:j(wr — p)z:l[ 2#5]—”2
E, = ex cos —— 17
P Pon® P p b ()

where P,(cos8) is a Legendre polynomial generally of nonintegral order.
It can be expressed with help of the I' function:

POy = — 52"‘:—\/”:_1‘(" 3 1) r(— 5”) (18)

Fuch o field can be analyzed in the space harmonics of magnitude

2isin ¢/2  P.(0)
B, = = 0 <o <2 19
p Poyerl0) ¢ \a)
/7., is not a continuous funetion of ¢ + 2mar as shown in Iig. 3, curve (3).
; Em(laﬁ
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I Magmitude of the space harmonics in a tape structure (pitch unity, voltage
winty between adjacent conductors), Curve (1), field assumed constant in the gap;
cirve 12), field assumed to be the same as for two semi-infinite planes; curve
L4, vxact solution.
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This would imply the existence of a sheet of charge and current. The

electric field of each space harmonie has no divergence (see the previous

Section 2.1 on “General Properties of Periodie Structures’ by this author).
i

We can thus deduee ¥, from K., and caleulate the current components

... from I,

Ii.= —J \/% signum (m) K. (20)
0

Now, it is possible to sum over m and obtain the current density which
obviously must vanish in the gap. Furthermore, it can be integrated over
the tape; this gives half the tape current since the tape has two sides. This
current is equal to the characteristic admittance

& @

4 sin 5 (21)
This simple result can be derived directly from Babinet’s principle if we
note that £, has the same variation as E., but the more complicated com-
putation indicated above can be useful to obtain an approximate value of
Y when we have a ground parallel to the structure (5).

Using relation (13) one sees that v can be deduced from ¥ by a Fourier
series expansion; then, we have

V=

.
TP = & i e (22)
4 = 7.5%; =158 o= 0.65% (23)

We then obtain Y in the form

Y=\/§[§— E:L"lcosm] (24)
polr SHiP-—1%

The characteristic impedance (21) is plotted in Fig. 4, curve (1); the
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Fig. 4. Charneteristic admittance of a tape structure. Curve (1), exact solution
(deduced from the Babinet’s principle); curve (2), expansion in Fourier series
limited to the first term; curve (3), expansion in space harmonics with the as-
sumption of a constant field in the gaps.

2.2 THEORY OF BAR LINES

N
S =
E D S
N &
+ l'% Oy
Ly &. + 5.
Q S -~
= by ~h+
hd kﬁ\f‘: N o NS
S g 2 v o |~ 8§
X et = E ol =
=) S, o2 S 5 - 5 ¥+
< 5 * B -
e 5| 2 2R B ECE:
IR : ) w § | ¢ S
S luyy 3| S |y B
(%] ¢|"\” sN% S @
S T
~ £ < S
© & S
20 N
% '|I«J Il
5 | E [l
= S
= r@‘ﬁ
S %R S
S & | ~n|E S = E ~ a8
SS|12s | B g as ¢
T3 |eMT § |y § | S €
w I £ e S 2 n 3
- S < .
E):E ] 1] gy
“ w s
S
N &n?lﬁ
S S [P | ‘f\l}‘ £ I o
~ I —ll~l©
R S \':f N *“la N % "
a3 ~|« i . V| ®
=< ! N " A b
>0
L-uN EN 1
W

F1c. 5. Some theoretical results about tape struectures, space harmonie magnitude, and characteristic

admittance (pitch unity, voltage unity between adjacent conductors).
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method of space harmonic expansion with the assumption of a constant
field in the gaps gives inaccurate results as can be seen in Fig. 4, curve (3).
This method is meaningless in the case where there is a ground plate very
near to the structure. The expansion (24) in capacities limited to the first
term gives the admittance plotted in Fig. 4, curve (2). A table of these
main results is given in Fig. 5.

B, Trin WIRE STRUCTURES

We consider here an array of thin eylinders of radius p very small com-
pared to the pitch (Fig. 2b). As a first approximation we can assume that
the field created by the charges on a bar is the same as if the total charge
was concentrated at its center. Then, we have to consider the field created
by a set of line charges at z = +=(2n — 1)p/2. Each charge q creates a
radial field ¢/2mer if r is the distance between the point and the charge.

The summation over all the charges can be made easily in some cases,
using the mathematical identity:

>  cosnr _ msinu(r/2 — 1)
4 cos (pr/2) (29)

2 2
n=135M1 — MK

and its derivative with respect to z. Fory = 0 we have only a z component,

q_exp [(jz/p)(x — ¢)] (26)

Ky = cos (z/p)w

- 2pey]
which could also be derived from the previous expression (15) for a = 1.
In this case the field becomes infinite near the charges as {z — (p/2)} .
All the space harmonics have the same magnitude at y = 0, where we have
the spectrum of a series of sharp pulses. Furthermore, all the ¥'s are
equal (and very small).

By summation we can also obtain, for instance, the y component of the
field at z = 0,
_g_sinh (y/p)(x — ¢ 27)
2pe;  cosh (y/p)m

E, =

which is asymptotic for large y to

0~ 4 o—Ge/ri 28

L o= 211 € € ( )

Practically, the only important point to mention is the following: if we

are secking the higher coupling impedance, i.e., the minimum stored energy
for a given field of the fundamental, the thin wire structures are not satis-
factory because large amounts of energy are stored near the wire; but such
a structure creates high order space harmonics, as well as its comple-
mentary, the thin gap structure.
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C. REcrancuranr SHAPE CROSS SECTION

Let h be the height of the bars and ap the gap width. When h is very
great in comparison with ap we can negleet the fringing fields and we have

s . 3 (29)
€p fa 31
n_ (- ap (30)
€n b

where b is the distance between the ground and the structure (b << p). A
better approximation can be made by taking into account the y"s obtained
in the infinitely thin structure analysis and writing (in the absence of
ground and for & = 3)

€ P 37

¥ 3 (32)

D. Circurar Cross SECTION

We can consider the capacity between two cylinders of diametelj ¢ in
free space; then, if (b + ¢/2) is the distance between the cylinder axis and
the ground:

7

s A . SO 33

o = oo (pl9) )

e 2r

& % 2b (34)
cosh™ (1 -+ ;)

These results are valid for ¢ close to p and small b.

I. Space Harmonics FoR CONSTANT HELECTRIC FieLp
Across THE GAPS

The simplest computation of space harmonics assumes that the field is
constant and equal to V/ap in the gap ap. This leads to

_ Vsin [(ep/2)(p + 2mm)] (35)
T p (op/2) (¢ + 2m)

It is valid for lower order space harmonics as can be seen in Fig. 3.

En
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F. Srace Harmonics v rHE Case oF IFIELDS VARYING,
e.g., Two Semi-InriniTe PraNes

The Schwartz transform permits one to compute exactly the field be-
tween two semi-infinite planes. This field gives a better approximation
than the previous one for a tape structure as shown in Fig. 3, curve (2).
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List of Symbols

frequency

velocity of light

angular frequency

propagation constant

free space wavelength

vacuum permittivity

vacuum permeability

coordinates

time

pitches of periodicity of the line
fundamental phase shift

electrie field

magnetic field-axial vector

stored magnetic energy

stored electric energy

potential

potential of a bar

current in a bar

length in direction of bar
capacitance/unit length between bar n and bar m
capacitance/unit length between bar and ground
arbitrary voltages

integers

integers defining positions of a bar in a cell
generalized characteristic admittance
generalized characteristic impedance
ratio of gap width to piteh

Legendre polynomial

gamma function

+1 for positive z

— 1 for negative x

electrie charge/unit length

diameter of a finger

height of a finger
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distance between o finger and the ground
number of bars in a cell

surface current density

radial distance
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