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Transverse Coupling in Fiber Optics
Part |: Coupling Between Trapped Modes

By J. A. ARNAUD
(Manuscript received August 3, 1973)

Two perturbation formulas have been proposed to evaluate the coupling
between parallel optical waveguides, one involving a line integral and the
other a surface integral. They are shown to be identical. The former
expression 1is preferred because of its greater stmplicity. The case of two
parallel lossy dielectric slabs is discussed as an exzample.

I. INTRODUCTION

There has been a renewed interest during the last few years in the
evaluation of the transverse® coupling between two parallel open wave-
guides in connection with integrated optics circuitry®® and long-
distance optical communication by bundles of glass fibers.

The coupling between two open waveguides can be obtained by
replacing the field of one waveguide by an equivalent current and
evaluating the perturbation caused by this current on the other
waveguide.! A more direct and slightly more general (but essentially
equivalent) derivation, based on Lorentz's reciprocity theorem, is given
in this paper. A related result, applicable only to lossless fibers, has
been used to evaluate the coupling between dielectric rods with circular
cross section.® The perturbation formula derived in this paper involves
an integral along a contour located between the two waveguides. A
seemingly different perturbation formula has been recently proposed
that involves a surface integral over the cross section.® The two
formulas are shown to be in fact identical. We will not discuss in
detail other coupling formulas such as the ones proposed in Refs. 7
or 3. In Ref. 7, the coupling is obtained by applying the Rayleigh-Ritz

* The word “transverse” is used here to distinguish the problem of two dielectric
waveguides lying side by side, where the transfer of power takes place in transverse
directions, and the axial coupling between two waveguides placed end to end, where
the transfer of power takes p?ace along the z axis (the later arrangement is discussed,
for instance, in Ref. 1).
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optimization technique to a variational expression. The formula ob-
tained by this method involves surface integrals and is rather com-
plicated. In Ref. 3, analytic expressions were obtained for the coupling
between two identical rectangular fibers that agree well with numerical
caleulations based on the exact field equations. The approach, how-
ever, is restricted to fibers with a particular geometry.

Il. GENERAL EXPRESSION OF THE COUPLING

Let the time dependence of the sources be denoted exp {(—«t).
Maxwell’s equations are, in a source-free region with scalar permit-
tivity ¢ and permeability uo,

v X E = xpH, (1a)
Vv X H =—«keE. (1b)
Any two solutions (E, H) and (E,, H.) of eq. (1) satisfy the relation
vl =6, (2a)

where
J=E;XH—EXH. (2b)

Integrating over a volume V, Lorentz reciprocity theorem is obtained
fS(EaxH—Exm}-ds=o, (2¢)
where S denotes the surface enclosing V, and dS a vector normal to

S pointing outward with magnitude dS. Let the medium be uniform
along z, that is, € be independent of z. If

(E,H) = (E., E,, H,, Hy) exp (12) (3)
denotes a solution of Maxwell’s equations, then
(E+: HT) = (""Eza Etg Hz: _Ht} (’-XP (—"YZ) (4)

is also a solution of Maxwell’s equations. The arguments z, ¥ have
been omitted in the above expressions, and the subseripts t stand for
«transverse.” The field (E+, H*) is the field adjoint to (E, H); it
describes a wave propagating in an opposite direction in the same
medium and at the same frequency. A more general definition of the
adjoint field, applicable to nonreciprocal media, can be found in Ref. 8.

Let us now consider two open waveguides a and b uniform along
the z-axis, and let S be the surface S. + S. + C.dz shown in Fig. 1.
The field (E., H.) in eq. (2) is taken as the field of a trapped mode on
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Fig. 1—Coupled dielectric waveguides.

nee of waveguide b. The dependence of (Ea, Ha)
z). The field (E7, H+) is the adjoint field of a

o coupled waveguides, With an exp (—T2)
o tn S, and S. tend to

waveguide a in the abse
on z is denoted exp (v

trapped mode of the : '
dependence on z. Letting the spacing dz between Sa

zero, eq. (2) becomes

(o= T) fs,. (E. X H+ — E+ X Ho)-dS.
__ [ (B, X H*— Et X H):dC,, (58)

e
endicular to the contour C,, pointing out-

where dC, is a vector perp : ]
for waveguide b we obtain

ward. Proceeding similarly

Gt f% (Eo X H* — B+ X Ho) S
== (Ey X HY — ET X H,)-dC,. (8b)

Cy

pling between the two waveguides is small, we can

Because the cou _ 0 is the sum of the fields of

assume that the field E, H at plane z
the two waveguides, that 1s,
E = E, + Ey, (6)
H . Ha + Hb- ’
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Substituting these expressions, eqs. (6), in egs. (5a) and (5b) we
observe that the cross terms can be neglected on the left-hand sides
(Lh.s.) because (E;, Hp) is small when (E,, H,) is large, and vice
versa. On the right-hand sides (r.hs.), on the contrary, only the
cross terms remain, as we can verify by applying Lorentz reciprocity
theorem to each waveguide. Multiplying together the Lh.s. and r.h.s.
of eq. (5a) and (5b) the desired equation for I' is obtained.

(T — %) (T — ¥5) = cats/PaPs, (6a)
where
Cab = fC (Ea‘b X Haﬁ: ol E;.-a X Ha.b)'dca.b) (Sb)
a,b
Py = fs (Bais X HE — Ed X Hao)-dSas. (6¢)
e, b

Because the coupling takes place only if 4. ~ v, the coupling c.
(resp. ¢») is independent of the choice of the contour C. (resp. Cu) as
long as it surrounds only one waveguide. By choosing the two contours
as coincident in the region where the fields of the two trapped modes
have a significant intensity and using eq. (4), we find that c. is equal
to ¢ It is shown in the appendix that our result, eq. (6), can be
expressed in the form given in Ref. 6. The expression, eq. (6), however,
is simpler to evaluate.

Let us now assume that the contours C., Cu coincide with the y
axis and are closed at infinity where the fields wanish. The general
expression, eq. (6), becomes

(T' — %)(I' — v3) = ¢&/PoPy, (7)

where
f " (BayHy + EuHy, — EnHo — EvHa)dy,
and

P = f f ™ (. X H,)-2dzdy,

+
P, =ff (E, X Hp) zdzdy,

where z denotes the unit vector directed along the z axis.

Let us specialize eq. (7) to symmetrical stratified dielectric wave-
guides such as the slabs shown in Fig. 2. The fields are assumed to
be independent of y. For TE waves the electric field has only one
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¥

component E, = E. We have, from Maxwell’s equations, eq. (1)

E.=E,=H,=0, (3a)
H, = (ku,)'dE/dz, (8b)
H, = —(v/xp)E. (8¢)

Equation (7) thus reduces to the simpler form

] ]
E:dxf E‘idx), 9)

(0 = 3T =) = (1 — /B3 / (

the fields B, and E; of the uncoupled waveguides being evaluated at the
same point between the two waveguides.

11l. COUPLING BETWEEN LOSSY DIELECTRIC SLABS

If the waveguides are homogeneous dielectric slabs of thickness 2d
and complex permittivity ¢ we have

E = exp (Fvzok) (10a)
above or below the slabs and, for even modes,
E = cosh (y.z)/cosh (v:d) (10b)

within the slabs (obvious changes in the origin of the r axis were
made). In eqs. (10a) and (10b) we have defined

v =k — 4, Real (vz.) > 0, (11a)
v: =k — ¥4 (11b)
k2 = xleouo, (1le)
nt = ¢/e.

The propagation constant v is known to satisfy
Yz tranh (T:d) + Yzo = O‘ (12)

(See, for instance, Ref. 6.) Substituting £ from egs. (10a) and (10b)
in eq. (9) we obtain, using eq. (12),

I — v =725 + v2d) (73 — 7o)t exp (—vzD), (13)

where D denotes the spacing between the slabs. This expression
coincides with the result given in Ref. 6 when appropriate changes of
notation are made.
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Fig. 2—Coupled dielectric slabs.

\Let us now make a general comment. The coupling formula, eq.
_f!)), rests on the existence of a divergenceless quantity, the vector J
in eq. (2a). Coupling formulas similar to eq. (6) can be derived from
obher'wave equations. For the case of the sealar parabolic wave
equation? applicable to the propagation of radio waves in atmospherie
duects, * the vector J has components ‘

J. =2k, EFE ~ EFoE/0z — EAE;/ 3z,
J. = BFfv.E — Ev.E},
where the adjoint field is

E,:(I: Yy z) = Eu(x: Yy —2).

[‘he_ above expression for J can be obtained by analogy with the
equivalent quantum mechanical problem.®
In conclusion, we have derived a simple coupling formula which is
more general than previous similar expressions** because it is appli-
cable to lossy fibers. In order to evaluate explicitly the coupling, one
needs to know the normalized field of each wavegfxide, in the absence
o__f the other, along some line located between the two waveguides.
It or. slabs and rods with circular cross section, exact solutions are
aymlable. In general, however, we have to resort to numerical tech-
niques or i:.o measurements made at a convenient wavelength on a
scalcq version of the open waveguide. In a second part of this paper,®®
we will apply eq. (6) to mode-selecting systems. ’

* A similar equation is applicable t i i

A 5 ation is 0 anisotropic fibers that have small transverse
}'{f.}"ff!{:ﬂ[l of permittivity.® Note that, in this approximation, a curvature of the fiber
axis is equivalent to a constant gradient of refractive index.
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APPENDIX

The purpose of this appendix is to show that for lossless fibers the
coupling formulas given in Refs. 4 and 6 coincide.
. Let (E, H) denote a field in free space

v X E = KFOH]

(14)
v X H = —«e&kE,
and (Es Hs) a field in a dielectric with permittivity e(r)
Vv X Es = xu,Hs, (13)

v X Hy = —«eEs.

It is easy to show that these fields satisfy the relation
[ (E X Hy — By X H)-dS =« fv (e — &)E-ExdV  (16)
8

in any source-free volume V bounded by 3. Let now the surface S
be the surface Ss + S; + Cidz shown in Fig. 1, (Es, Hs) be the field
of a trapped mode of waveguide b with an exp (y32) dependence on z,
and (E, H) be the adjoint field (EF, Hi) of a trapped mode of wave-
guide a, with an exp (—7a2) dependence on 2. The field (Ed, H
satisfies eq. (14) inside the surface S that we have just defined. If the
two trapped modes are degenerate, that is, if ya = 7vs, the contribu-
tions of the two surfaces S, and S; on the Lhus. of eq. (16) cancel out.
Therefore, letting dz tend to zero, eq. (16) becomes

f (Ef X Hy — E» X Hi)-dCs = & fs (¢ — &)ES EudSs (17)
Cy ¥

A similar relation can be obtained for waveguide a. Our coupling
equation, eq. (6), can therefore be written in the form given in Ref. 6,
except for the fact that in eq. (6) EF and E, represent fields at t.he
same frequency. In Ref. 6 the field EJf is defined at the opposite
angular frequency —«, that s, EF is replaced by EZ", where the asteris_k
denotes complex conjugation. For lossless fibers this difference 18
unimportant because E;” can be assumed real.
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