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Transverse Coupling in Fiber Optics
Part IlI: Coupling to Mode Sinks
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{Manuscript received October 12, 1973)

The number of modes that can propagate without radiation loss in
oversized waveguides is sharply reduced if the waveguide s coupled to a
structure supporting radiation modes, the loss mechanism being analogous
to Cerenkov radiation. The coupling formula derived in Part I' vs used
to evaluate the loss for a specific configuration: a reactive surface (e.g.,
a thin dielectric slab) acting as a waveguide, coupled to a semi-infinite
dieleciric acting as a mode sink. The method consists in first assuming
thal the substrate is finite in size and lossy and adding the losses associated
with each substrate mode. The subsirate dimensions are subsequently
made infinite and the dissipation loss is made to vanish. The expression
obtained for the radiation loss coincides with an expression oblained by
solving the boundary value problem. The method is then applied to the
problem of mode selection for dielectric rods coupled to dielectric slabs,
which is of particular importance for optical communications and inie-
grated optics. A 2-dB/m radiation loss s calculated for the first higher
order mode when the rod radius ts 10 wm, N = 1 um, n = 1.41, and the
rod-to-slab spacing is 0.15 uym.

I. INTRODUCTION

An expression for the coupling between lossy single-mode open wave-
guides was derived in Part I.! We now investigate the coupling of 2
waveguide with finite eross section with a waveguide with infinite
cross section (called a substrate), the latter supporting radiation modes.
Radiation losses are suffered whenever the propagation constant A of
the guided mode is smaller than the highest propagation constant h,
of the radiation modes carried by the substrate. Radiation then takes
place at the Cerenkov angle 8 = cos™! (h/h,). By properly choosing
the dimensions and permittivities of the waveguide and those of the
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substrate, it 1s possible to reduce the number of modes that can
propagate without attenuation (in the absence of dissipation and
scattering losses). This arrangement is of great practical importance
because optical fibers are usually highly overmoded to facilitate fabrica-
tion and splicing.? (For a coherent source, it is important to reduce the
number of modes because different modes usually have different
group velocities. If a short optical pulse is sent through the fiber, mode
conversion takes place because of the imperfections of the fiber; this
causes the pulse to spread in time.) The mode selection mechanism
just described is also of practical importance in the microwave range
for oversized waveguides such as oversized microstrips on dielectric
substrates and oversized dielectric strips.® Multimoding in traveling
wave tubes can also be avoided with the help of mode sinks.

We investigate the loss mechanism for two specific configurations.
First, a reactive surface acting as a waveguide coupled to a semi-
infinite dielectric acting as a mode sink. We show that, by adding the
losses associated with each substrate mode, an expression for the total
loss is obtained that coincides with an expression obtained by solving
the boundary value problem. Then the method is applied to the prob-
lem of a dielectric rod coupled to a dielectric slab.? The case of dielectric
rods coupled to dielectric- cylinders supporting whispering gallery
modes and acting as mode sinks® will be discussed in another paper.

Il. RADIATION LOSSES IN SUBSTRATES—GENERAL FORMULA

To evaluate the radiation losses, let us first assume that the trans-
verse dimensions of the substrate are finite, and let A,; = A,r + #hsi
be the propagation constant of a trapped mode in the substrate, with
hsr real and h,. real positive (the subseript s stands for “‘substrate’).?
If h, denotes the propagation constant of a trapped mode of the wave-
guide in the absence of the substrate, the propagation constant A of
the coupled wave is, from eq. (6a) in Part I,

ho=tho+ Yhes — ko) — [3(hes — ho)? + C2]Y, (1)

where C* = ¢,c/ PP denotes the coupling coefficient defined in Part
I. The minus sign before the square root has been selected because it

*In the microwave range, there are no compelling reasons for using dielectric
waveguides that are large compared with the wavelength in all dimensions, but we
may want to use strips (either metallic or dielectric) whose widths exceed one
wavelength for improved accuracy.

f The dependence of the field on time (£) and on the axial coordinate (z) is denoted
exp [2(hz — wi)]. This term is henceforth omitted.
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corresponds to the mode whose field is concentrated in the waveguide
cross section rather than in the substrate (that is, we require h = h,
when C* = 0).

Let us now assume that h, 1s real (lossless waveguide) and that

hei > C. ()

Using this condition, eq. (2), we can expand the r.hs. of eq. (1) in
power series of C? and keep only the first two terms in the expansion.
The loss is given by the imaginary part h; of h. Because the imaginary
part of C* can be neglected in the case that we consider, we have

h—;’ ~ Czh“'[(}-‘." e ho)g + }33{:'*1- (3)

The total loss £ experienced by the waveguide is now obtained by
summing over the various modes of the substrate:

uﬁ o Z Cghai[:(hsra == ho)2 + hif]_lr (4)

where the subseript a refers to the substrate modes. We have assumed,
for simplicity, that k,; does not depend on a. It is shown in the next
section for a simple configuration that in the limit of dense substrate
modes eq. (4) is in agreement with an exact result, obtained from a
boundary value method.

If we let the cross-section area S of the substrate tend to infinity,
the substrate modes become denser and denser, and the summation
in eqg. (4) can be replaced by an integral

£ = lim ¥ C2huil (hera — ho)? + A4

S=% a

—_— ./e(h'sr)hsf[ (}hr - ha)2 + hzf]—idharp ('3)

where we have defined a coupling density € by
C(he)dhey = lim 3 C2,

S @
the range of o being defined by the condition
hlf < h'ara = har + dhsr- (6)
This density exists because, as S — =, the coupling coefficient C*
decreases at least as fast as S7!, the power in the substrate being
proportional to S if the power density is kept a constant.

We can now let k,, tend to zero, the condition eq. (2) being pre-
served. . The second factor in the integrand of eq. (5) is sharply peaked
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at h,, = h, and behaves as a symbolic s-funetion. Thus, in the limit
hei — 0 we have

£ = wC(h,). (7

It should be noted that the subscript « in egs. (4) to (6) stands for
three subseripts m, n, and s, where m refers to modes in the z direction,
n refers to modes in the y direction (we assume for simplicity that the
substrate modes are separable in Cartesian coordinates), and s refers
to the state of polarization (e.g., H or E modes).

lll. COUPLING TO A SEMI-INFINITE SUBSTRATE

Consider a reactive surface coupled to a semi-infinite dielectric
(Fig. 1). We consider only A modes and assume that the field is

Z
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_ Fig. 1—(a) Reactive surface, with normalized susceptance o, coupled to a semi-
infinite dielectrie with permittivity ¢ = n%,. For H modes, the structure is assumed
terminated in the y direction by electric walls. Radiation takes place at the Cerenkov

a?gle 8 = cos™' [(k* + a)i/kn], k = 2=/A. (b) Variation of the field as a function
of .
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independent of the y coordinate. Except for the changes z 2y and
i —» — 1, we use Shevchenko’s notation.?

For waves propagating along the 2 axis, the electric field has only a
y component that we denote E. In a region with constant e, E obeys
the wave equation

BE/de? + (wep, — BE =0,
H. = —h(ww)™E,
H. = (iwp,)'dE/dz. (8)

If ¢ has a finite discontinuity, £ and dE/dz remain continuous.
The general solution of eq. (8) for ¢ = ¢, and e are, respectively,

E = Atex® 4+ A~e %7, (&) (9a)
E, = Afew: + A7evs, (€ (9b)
X = wleu, — I, (10a)
g = wrep, — B = + X,

10b
ut = wi(e — €)to (10b)

The loss can be evaluated by solving the boundary value problem.
At the reactive surface (z =-—D), we have the condition (see Ref. 4)

dB/dz + «E = 0, z= =D, (11)

where a is a positive real number proportional to the susceptance of the
surface.” We assume that, in the dielectric, the wave propagates away
from the structure, that is,

E, = Ajev=. (12)

Note that h is expected to have a small positive imaginary part ex-
pressing the radiation loss in the dielectric. Assuming that e is real,
that is, that the dielectric is free of dissipation losses, eq. (10b) shows
that ¢ has a small negative imaginary part. Thus, the wave amplitude
grows exponentially as the distance to the structure increases. This
solution of Maxwell's equations is called a “leaky wave.” * It is not
difficult to show that the curves of constant irradiance in the dielectric
are straight lines making with the z axis an angle 8 = cos™ (ho/kn)
(Cerenkov angle).

* A thin dielectric slab with permittivity ¢ and thickness d, supported by a
magnetic wall, is equivalent to a reactive surface with normalized susceptance
« = wt(e — ea)pot. An equivalent configuration, obtained by symmeiry with respect
to the magnetic wall, is a thin slab of width 2d with dielectrics symmetrically located
on both sides. Note that « has the dimension of a propagation constant.

TRANSVERSE COUPLING IN FIBER QPTICS 11 679

From eq. (12), the boundary condition at z = 0 is
dE/dz — igE = 0, z =0 (13)
From eqs. (9a), (11), and (13), we obtain the equation defining X, or &,
(X = ia)(X 4 g) = (X 4+ da) (X — g) exp (2XD). (14)
OB ) TRt o Ry A
X2 = X2 = wlep, — hE = —¢ (15a)

a

P =g = we — e)u, + X2 (15b)

Equation (L5a) defines the i
. propagation constant h 3
reactive surface. SRS ESR

Let us now consider
exp (2ix,D) = & (16)
as a small parameter and set
Wiis W ARG R B,
g=gotgd+ e 40
in egs. (14) and (10b). Collecting terms of first order in § we get

X1 = 2a(ic — g.)/lia + g.). (18)
From eqgs. (10a) and (17) we have, to first order,
Im(h) = —(ad/h,) Re (Xy1). (19)

Thus the loss £ = Im(h) is
£ = dadu~th; g, exp (—2aD), (20a)
or, explicitly, in terms of &, n, D, and «,
£ = 4[k(n? — DIk + 5
X [k¥n? — 1) — a*Jtexp (—2aD). (20b)

If.bhe micron i:e. used as the unit of length, the loss in dB/km is ob-
tained by multiplying the r.h.s. of eq. (20b) by 8.7 X 10°

Tl.lis expression for the loss, applicable to small couplings, can be
obtained alternatively from the equality

b= f (- EO)E+-E,,dS/f(E+ X H, — E, X H)-dS, (21)
where (E, H) and &, denote the field and propagation constant of the
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wave guided by the reactive surface in the absence of the dielectric
and (E*, H*) denotes the field adjoint to (E, H) (see Part I). (E,, H,)
and A denote the field and propagation constant in the presence of the
dielectric. The integral in the numerator extends to the dielectric cross
section, and the integral in the denominator extends to the whole
cross section. Equation (21) is exact and is readily obtained from Max-
well’s equations.® The field (E,, H,), unfortunately, is not known. It
may differ considerably from the unperturbed field (E, H) when the
dielectric supports modes almost synchronous with the waveguide
mode. This is why this expression, eq. (21), is, in general, not practical
to evaluate the coupling between waveguides, or waveguides and mode
sinks. The configuration presently considered, however, is sufficiently
simple to be handled on the basis of eq. (21).
For our case, eq. (21) becomes, with the approximation i /3 h,,

ho— Ry 2 = (Pa/2hs) ﬁ " (e = e)BEdx / f_”D Edr.  (22)

The unperturbed field, normalized to unity at z = —D, is
E = exp (1xz) exp (1xD). (23)

The perturbed field is obtained by assuming as before an exp (igx)
dependence in the dielectric, matching £ and dE/dzx at the vacuum-
dielectric interface (r = 0), and stating that E,~1 at = = —D,
We obtain

E, = 2(1 + g/X)™" exp (4xD) exp (igz), z 20 (24)

Substituting in eq. (22) and integrating, a result identical to eq. (20)
is obtained.

Let us now apply to the same problem the method explained in
Section II of this paper, which consists in adding the losses associated
with each mode of the substrate. The coupling coefficient between two
H modes, with fields £ and E,, was given in Part I. With our present
notation we have

cr = azhﬁ(f;s/ szdz)(Eﬁ/szdx), (25)

where the integrals are over the whole cross section, and E, E. are
defined at some point located between the two waveguides.

* The contribution at infinity is assumed to vanish. Thus, it is implicitly assumed
that the rate of decay of the unperturbed field exceeds the rate of growth of the
perturbed field. This condition is always satisfied for small couplings.
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The field E of the reactive surface alone is, as we have seen,
E = exp (—ax). (26)
Thus, at z = 0,

_;*2,“=/fm Ez = 2aexp (—2aD). (27)
-D

Let us consider next the dielectric alone and first assume that its
thickness L is finite. By matching £ and dE/dx at # = 0 and z = L.,
we obtain the field at the vacuum dielectric interface, and

+= Lz
B / f Bz~ B2 / f Bz = 22u— Lt (28)
— 0

Substituting egs. (27) and (28) in eq. (23), we obtain the coupling
coefficient
C? = 4a®giu—h; 2 exp (—2aD)L:t. (29)

Let us now evaluate the number of modes (N dh) in the dielectrie
whose propagation constants lie between A and & + dh. Because we
are far from cut-off, the boundary condition is almost the same as for
a metallic waveguide, £ = 0. Thus, the condition on g is

gm = mx/Ls, m=1,2 ---. (30)
Using the relation
g = wep, — A2 (31)
the mode number density is, from eq. (30),
N = hg L./~ (32)

The radiation loss is obtained from egs. (29), (32), and (7), and h = h,,
g = Go
£ = 7C:N = 4c®uh; g, exp (—2aD). (33)

This result coincides with the result eq. (20) obtained by taking the
limit of large D in the exact solution. The variation of the loss expressed
in dB/km is given in Fig. 2 as a function of the normalized susceptance
o of the surface, for A = 1 um, ¢/¢, = 2, and D = 1.5, 1.75, and 2 pm.

For comparison, when the dielectric permittivity has the form
€ = € 1+ te (the dielectric is perhaps a lossy foam) and the spacing
D is chosen as large as consistent with a loss of 10 dB/km at o = 6.28,
the loss experienced is shown on the same figure as a dotted line. The
comparison clearly shows the advantage of mode sinking over dis-
sipation for mode selection.
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Fig. 2—Radiation loss in dB/km as a function of the normalized surface suscep-
tance « of the waveguide for a wavelength A = 1 um, n* = 2, and D = 1.5, L.75,
and 2em. The dotted line is applicable to a dissipative dielectric.

IV. COUPLING TO PLANAR SUBSTRATES

Let us now consider a waveguide with propagation constant hy
coupled to a substrate that extends to infinity in the y direction, but
has a finite thickness in the z direction. This substrate is perhaps a
reactive plane (e.g., a corrugated conductor) or a dielectric slab, as
illustrated in Fig. 3. In any case, homogeneity of the substrate in the

y, 2 plane is assumed.
Because of the assumed homogeneity of the substrate, plane wave

solutions
E.(z, y, 2) = E.(2) exp (Ghay + thee2), (34)

where i
'hat . f(h'!b'.- w); (3':’)

exist at some angular frequency w (w is now considered a fixed param-
eter and is omitted).
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F1a. 3—Dielectric rod coupled to a dielectric slab. The rod field & is shown for the
spurious Ho mode, and the slab mode is Hy, (v is a continuous index in the limit
Ly, — «). Coupling takes place at ¢ = 0.

In the discussion that follows, we consider only waveguide and sub-
strate modes that are even in y. Assuming that f is even in A,y and
that the slab is terminated by electric walls, even modes satisfy the
relation

hey Ly = 20, n=012. - (36)
where L, denotes the width of the substrate. L, will be later assumed
to tend to infinity. The density N of even modes is from eqs. (33)
and (36)

N = (df/dhs,) " (Ly/2x). (37)
If the substrate is isotropie, with wave vector A, eq. (35) is
hse = f(hey) = (B3 — h3Y (38)
and the mode density is, from eq. (37),
N = (hazfhsy) L/ 27 (39)
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The loss is then obtained from eqs. (7) and (39). :
£ = [h/ f () ]C°L,, - (40)

the coupling coefficient C* being evaluated from eq. (6) in Part L

It should be noted that, when the propagation constant of the wave-
guide mode (k) is just equal to the propagation constant (h,) of the
2-dimensional substrate, &,, is equal to zero and the loss, according to
eq. (40), is infinite if C*L, remains finite. (This was not the case for
the 3-dimensional mode sinks considered in Section III because, as
L.— =, the field at the surface of the dielectric tends sufficiently
rapidly to zero to make C*L, vanish in the limit.) This infinity at
hy = h, would be removed if some finite dissipation loss in the substrate
were present. Even in the absence of dissipation losses, the radiation
loss remains finite at hy = &, because the perturbation method on
which eq. (40) is based is no longer applicable. The peak in the loss
curve predicted by eq. (40) (analogous to a sound barrier) is pro-
nounced only for small couplings.

Our general result, eq. (40), is now applied to a dielectric rod coupled
to a dielectric slab. The thickness and permittivity of the slab can
always be chosen in such a way that only the fundamental mode of the
rod propagates without radiation loss. The calculation of the loss of
higher-order modes is carried out for the case where the rod diameter
and the slab thickness are very large compared with the wavelength;
that is, when the rod is highly multimoded in the absence of coupling.

Approximate expressions for the modes and propagation constant
in the slab and the rod are given in the next subsections.

4.1 Modes of the slab

Let us consider first the modes in the dielectric slab. If the thickness
2d of the slab is very large (more precisely, if w?*(e — e)u.d* 3> 1), the
propagation constant of the fundamental H; mode is approximately
given by the condition that the field F wvanishes at the boundary

E(x, 2') & E,, cos (g.2) exp (th,).

Thus, we have*
= wteu, — k3 = (n/2d) (41)

* A more accurate and general expression is (see Refl. 3) g.d = m(=/2)(1 — V1)
for A modes and g d = m(x/2)(1 — n~*V-!) for £ modes, wherem = 1, 2- - is the
mode number and V = ud. These expressions show that the ff, mode that we are
considering in this section is the fundamental mode; that is, the mode that has the
largest propagation constant. The difference Ak in propagation constants is, for
m = 1, equal to d™' (x/2knd)* (1 — 1 /%)%
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(The axial ecoordinate is denoted z' instead of z to avoid changing our
notation when waves propagating at some angle to the z axis are con-
sidered. The origin of the z axis is, in this subsection, at the center
of the slab.) The axial (2/) and transverse (z) components of the
magnetic field are, within the slab, as we have seen before

H:
..

—hs(wpo) B, (42)
(Twp,)"dE/dx, (43)

and the power per unit width is approximately

+d
Pigs = f d EH dx = dha(w#o)_lEfo- (44)

The field at the boundary is in fact not exactly equal to zero. To
obtain its value, we use the fact that the dependence of E on z in
vacuum is exp (—p,x), where p} = A? — wle,u,, and the continuity of
dE/dx. We obtain

E(d) = (=/2d)p: ' Eso. (45)

Now let the slab have a finite width L, with electric walls at
y = = L,/2. The modes even in y can be described as a superposition
of two infinite slab waves whose propagation constants are such that

hey = = 2mn/L,, n=012 ---. (46)

We have, by definition,
hi + b = R, (47)

he being given in eq. (41).

The field has all its components different from zero with the exception
of E., which vanishes. The components E, and H, are obtained by
adding the field of the two waves. We obtain

By = 2h:ht cos (hyyy) cos (rz/2d)E,,, (48)
H,: = —2(iwp,) " hesh (w/2d) cos (hyyy) sin (rz/2d)E,,. (49)

The energy flowing through the slab is obtained by multiplying P,
given in eq. (44), by 2h,.h7'L,

P, = 2k (wp,)"\dL, B2, (50)

The y component of the field at the boundary (z = d) is obtained
from eq. (45) or directly from H,, = (iwg,)"'9E/dz:

Eold) = —p Hop,H .. (51)
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4.2 Modes of the rod

" Let us now turn our attention to the modes of the dieleetric rod.
We assume that the radius a of the rod is much larger than the wave-
length (a > \).

In the limit of large radii, the propagation constant of the funda-
mental HE;; mode is given (see the appendix) by the first root of

Jo(g.a), namely,
7.0 = (wlep, — hi)la = 24 .-, a— =« (52)
The next higher order mode of the dielectric rod is the [y mode.*
In the limit of large radii, the boundary condition at r = a is E, = 0,
as for a round metallic pipe. The propagation constant 4, is therefore
given by

Ji(gia) =0, (53)
whose first root is
g1a = (wleu, — hP)ta = 3.8+, a— =, (54)
Within our approximation, the field of the Ho, mode in the rod (r < a)
has components

Es = Jiulgn),
H, = —h(wp,)" (), (53)
H, = (top) " g1]o(gr),

and the energy flow is
P=— f " BLH Zardr = whilons) a3 gua). (56)
1}

To obtain the field E, at the boundary (r = a), we use the fact tha..t,
df/dr is continuous and that the r dependence of £, in vacuum is
approximately’ exp (—pir) where pi = A} — w?e,u,. We obtain

Eo(a) = prliwp.t.. (57)

4.3 Synchronization conditions

For simplicity and because this is a case of practical sig.ni‘ﬁ(':ance,
we assume that the rod and the slab have the same permittivity e.

" The Eo and HE: modes have almost the same propagation constant as the Hg
mode fgr l;}rge rod ra(ilii. For small radiation losses, they can be considered indepen-
1v of the Hy mode (see appendix). )
deE‘IEI‘}l’l: ex:::r. L::apenden(ce of s on ris Ko(pir), where K, denot:es the modified
Bessel function of the second kind. For large arguments, K,(z) = (2/xz)! exp (—z)

and Ky(z) =— (2/~z)exp (—z) =—K,(z).
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The fundamental HE;; mode of the rod is free of radiation loss if its
propagation constant A, given in eq. (52) is slightly larger than the
propagation constant A, in the slab given in eq. (41). For simplicity,
we set h, = h, or, equivalently, g, = 7.; that is,

r/2d = 2.4/a, (58a)
or
d = 0.65a. (58b)

Thus the ratio of the slab thickness to rod diameter is 0.65. (In practice,
the slab has finite dissipation losses and a finite width. Furthermore,
it is difficult to control accurately the thickness of the slab. For these
reasons, it might be preferable to choose the value of A, midway
between the propagation constants of the HE,; and Ho; modes rather
than equal to the propagation constant of the HE;; mode. If the
former condition were to hold, we would find that the slab thickness
should be equal to half the rod diameter.) Figure 4 gives the propa-
gation constants of the rod and the slab for n = 1.41 and a rod radius
of 10 pm (A = 1 pm).

Let us now consider one of the next higher order modes of the rod,
the Ho, mode. This mode radiates into the substrate modes that have
the same propagation constant along the z axis (h,, = hy). Using eq.
(54), we obtain

wiew, — hi = (3.8/a)2 (59)
Since
h?a o k?u = &3: (60)
and A, has the value h, given in eq. (52), we have
hsy = (3.8/a) — (2.4/a)?, (61)
or
hyy = 3.0/a. (62)

In the next subsection we evaluate the coupling coefficient between
the Ho; mode of the rod and the substrate mode defined by eq. (62).

4.4 Coupling coefficient

The contour of integration for the evaluation of the coupling
coefficient being arbitrary, it is convenient to choose this contour as
the rod boundary, r = q. Along that contour, the H, mode field is a
constant.
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Fig. 4—Propagation constants (h) of the trapped modes of the rod and maximum
value (h,) of the propagation constants of the radiation modes in the slab. it is
assumed that n = 141, A = L ym, and a = 10 um. The modes circled are those
whose coupling is discussed in this paper.

Let ¢ denote the angle from the z axis shown in Fig. 3 and D the
spacing between the rod and the slab. We have

z = —D — qa(l — cos ¢),

¥ = asin ¢. ()

Because a >> X, the coupling takes place near the point of closest
approach of the rod to the slab; that is, ¢ &2 0. We can therefore write

R —D — ap¥/2,

(64
Y = ag. )

The y dependence of the field slab is cos (hyy) = cos (he,ae). How-
ever, since, according to eq. (62), h,, is of the order of a, the argu-
ment of the cosine function is small ecompared with unity in the range
where the coupling is significant. Thus, we can neglect the dependence
of the field of the slab on y. This approximation could be relaxed with
little additional complication.
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]

Using the above approximation, we obtain for the field of the Hy,
mode (rod) at r = a, from egs. (55), (56), and (57),

H, = (iwp,) 'g1Jo(g1a), (65a)
Ey = piYiouH ., (65b)
P = whi(wp,) e S§(g:1a), (65¢)

where
gi = w®eu, — b3 = (3.8/a)?,

* e
= — e, N w(e — )i = ub

(66)

For the slab we have, at r = a, from eqs. (49), (50), and (51),
setting the arbitrary constant E., equal to unity, h,, 22 A, and taking
into account the exp (p,z) dependence of the field below the slab

Hiy: = —2(iwp,)™ (r/2d) exp [—p.(D + a¢?/2)], (67a)

B = —pihiwp,H .., (67b)
P, = 2h,(wp,)dL,, (67¢c)
with
he &2 by &2 kn,
PRI U = k(n? — 1), (68)
T/2d = 24/a.

The coupling coefficient C? is ¢*/ PP,, where

c=af [EH.— E.,cos ()H.}ds. (69)

-

From eqs. (65) and (67), it is apparent that the two terms in the
integrand in eq. (69) are equal and add up if we make the approxima-
tion cos ¢ &2 1. Thus,

+wm
¢ 2 2E, j H,.dé. (70)

—

Using eq. (67a) for H,., we have
f T Hodd = —2(iwps)~(x/2d) exp (—p.D) (2n/pia)t,  (71)
if we make use of the identity

[ etetin = (apiy. (72)

Thus,
c = 4ap1_‘g1 (fwp,) ™t (r/2d).J, (911‘1} exp ( —}O,D) (Qﬂ'fpaa} LS (73)
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and
C? = (32/m)gi(m/2d)* (w*h*aL,)™ exp (—2uD). (74)

Since the mode number density is given by eq. (40), the loss
£ = 3(hee/hey)C?Ly (75)
is finally obtained from egs. (74), (62), (66), and (68),
£ = 340n—(n? — 1)} (k'a®)"exp [—2(n* — 1)'%kD].  (76)

The loss in dB/km is obtained by multiplying the r.h.s. of eq. (76)
by 8.7 X 10% the um being used as the unit of length. Thus, for
n = 1.41 and n = 1.01 we have, respectively,

1.41, (77)
1.01. (78)

Lanam = 1.35 X 10052 (a/N) "% exp (—12.5D/)), n
Lapmm = 6753 X 1001 (a/N) 2 exp (—1.76D/)N), n

For example, if D = 0.15 pgm, n = 1.41, A = 1 um and ¢ = 40 um,
we find that the radiation loss of the Hy, mode is £ = 2 dB/’km._ If
D=1pum, n=101x=1um, and a = 40 pm, the loss is as high
as 1140 dB/km. The radiation loss is shown as a function of a/\ and
D/\ in Figs. 5 and 6 for a wavelength of 1 pm, and for n = 1.41 and
1.01, respectively. The amount of loss required to prevent the power

kS
~
~
n=141
b ~
100 ~

& ~

2

(-]

=]

Z

w

S 10k

.
~
~
a=40um
1=
I I 1 I ! | J
0 0.1 0.2 0.3 0.4 05 06 0.7

D {m)

ig. 5—Radiation loss in dB/km of the rod Hg mode in the slab as a function of
spfé‘:gngal) with the rod radius a as & parameter, for n.q = N = 1.41. These curves
are valid for large values of D.
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Fig. 6—Continuation of Fig. 5 for n = 1.01.

transferred to the My, mode to be transferred back to the HE;, mode
and to cause pulse spreading depends on the fiber irregularities and is
not aceurately known.

The above results are approximate and, to some extent, incomplete.
In particular, the perturbation method that we used is not accurate
when D is small. Also it would be useful to ascertain that the radia-
tion losses of the other higher-order modes are at least equal to the
loss calculated for the Hyy mode. For some of these higher-order modes
of the rod, it is necessary to take into account the higher-order modes
of the substrate, both £ and H, and this involves some complication.?
In spite of these limitations, our result, eq. (76), should provide pre-
liminary information concerning the mode-selection mechanism
afforded by 2-dimensional mode sinks. In particular, the very fast
dependence of the loss on the rod radius (e=%) indicates that very
large rods cannot be used if single-mode operation is to be achieved
in air. However, if the gap between the rod and the slab is filled up
with a material whose permittivity is only slightly smaller than the
rod and slab permittivities, the rod radius a and the spacing D can be
large, as Fig. 6 suggests.
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APPENDIX
Limit forms of the propagation constants in optical fibers

Two approximations can be made, applicable to low-order modes
in highly multimoded fibers and to fibers with small transverse varia-
tion of permittivity. A simplified presentation is given in this appendix.

Low-order modes propagating in highly multimoded fibers cor-
respond to waves propagating almost along the axial direction, z.
The propagation constant i is therefore close to kn if n denotes the
refractive index on axis. If the fiber refractive index is a constant
within some contour and assumes a lower value outside that contour,
the wave near a section of the contour can be assumed plane. Because
it is incident at grazing angles, the electric and magnetic fields tend to
zero compared with their values in the bulk. Thus, the electric and
magnetic fields at the boundary of a dielectric rod vanish, compared
to their wvalues on axis, as the transverse dimensions of the rod tend
to infinity for a given mode number.

For a round fiber with refractive index n and radius a, the exact
equation defining A is, using the notation of the main text,?

[numm;.mwg}[xma K, (us)
wd () UK, (u2) || wad () | weK, (us)

=|:£z(u?+u§)

k whis ]’ (79)

the axial and azimuthal variations of the field being denoted
exp (thz + ivg) and

wy = ga = (k*n — h?)la,

uy = pa = (h* — kH)la, (80)

k= w(eoﬂo)t
In the limit @ — <, us tends to infinity and the second terms in the
brackets on the L.h.s. of eq. (79) vanish [K.(2)/K,(z) — —1lifz— = ].
On the r.h.s. of eq. (79), & can be replaced by kn. Thus, it is apparent
that eq. (79) becomes

Jo(w) /T (w) = % v/ua, (81)

or, equivalently, using well-known formulas involving Bessel’s func-
tions and their derivatives:

J,.._.;(ul) =0 (82)
*We have v/, T 2J, = rJ, . and (for later use) vK, &+ zK, = FzK, 1.
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v <0 (H=—}U&=“y#=yﬁ=l) (x=2) L"'PO
HE J‘_|=0 )r°= J1.=U Je=10 J;=0 EH
Note: J., =0&==J, =0]

For symmetry reasons, modes with opposite values of » have the same
propagation constants. For v = 2, for instance, the propagation con-
stants of the two sets of modes are given by the roots J; and J;. For
y = —2, they are given by the roots J_; and J_,. However, these are
the same because J_, = (—)*/J,. Equation (82) was given by Snitzer.”
For the HEy; (v = 1) and Hpy (¢ = 0) modes, the relevant solutions of
eq. (82) are the first roots of

Ju(ul) = 0, i = 2.4 (83&)

and
Jl(ul) = 0, Uy = 3.8, (Sgb)

These are the results used in the main text.

Because the modes Hyy, Eyy, and HE»; have almost the same propaga-
tion constants (see Table I), the validity of the calculations given in
the main text can be questioned where the mode Hoy was considered
independently of the two other modes. It is therefore important to
evaluate the actual splitting between these three modes. For simplicity,
we consider only the Hy and Ej modes. The expressions giving the
exact propagation constants of the Hy, and Eg; modes are, settingv = 0
in eq. (79),

Ja(ur)/wrdo(ur) = — Ky (u2)/uaKo(ue), (Io), (84)
and
Ji(w)/wdo(wy) = —n*Kl(ug)/u-_-Kg (ug}, (Eq). (85)
Setting
uL = u, + 6, b K1, (86)
where
Jiuw) =0,  wu, =38 (87)
on the Lh.s. of egs. (84) and (85) and
ue = k(n* — 1)'a (88)
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on the r.h.s., we obtain for the difference Ak in propagation constant
between the Hy, and Eq, modes

Aha = (3.8/kna)*(1 — 1/n%)}. (89)

Except for a numerical factor, this result is the same as for a slab (see
Section 4.1). If @ = 10 um, n = 1.41, and A = 1 um, the beat wave-
length 2x/Ah is, from eq. (89), equal to 5 cm. ’

The individuality of the Hy, mode is preserved and the calculations
given in the main text are valid if the loss £ is sma’xll over t-h.a{: length
(eg., £<1 dB/em for a = 10 um). In fact, this restriction on £
may be even less stringent than that calculated above because the de-
ger;eracy between the three modes may be lifted further by the pres-
ence of the slab when the coupling is increased. ‘

The second approximation referred to at the begin.ning of this ap-
pendix is the scalar approximation widely used in optics. If the trans-
verse variations of the medium permittivity are small, the z and y
components of the field satisfy approximately the scalar Helmholtz

equation
(6%/02* + 0%/ 3y )E. + [h*n¥(z, y) — K2E, = 0. (90)
A similar equation holds for £, which need not be written down.

Because all quantities are bounded in eq. (90), E. and its first

derivatives are continuous functions of z and Y. .
For the rod considered eatlier, eq. (90) becomes, assuming an

exp (iu¢) dependence of £, on ¢,
BE:/dr* + r7dB./dr + (k*n? — h® — @2/PE, = 0, r < a, o1)
EE./dr? + r~dE,/dr + (k* — h? — BrE. =0, r>a
These are differential equations for Bessel functions. The bounded
solutions of eq. (91) are

.= J.(gr), g° = k™? — 2 r<a (92)
E. = AK,(pr), PP =R -k r>a.
Continuity of E. and dE./dr imposes
Sulw)/ Ko (ug) = (ur/ue)J i (wr)/ K, (ua), (93)
or, using the transformation formulas given before,
w1 () /(1) = UK s (u2)/ K, (10), (94)

a result previously derived by Snyder® from the exact equation, eq.
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(‘79). In the limit ¢ — w eq. (94) reduces to
Julus) =0, (95)

in agreement with eq. (82). To each valie of K We must associate modes
corresponding to the two states of polarization of the electromagnetic
field. This is illustrated in Table I. '

The physieal significance of the scalar approximation is that if,
for instance, a linearly polarized field, solution of eq. (90), is launched
into a fiber, this field configuration is approximately maintained over
a certain length. Eventually, however, the polarization Is transformed
because the two electromagnetic modes have slightly different real
propagation constants as we have seen (for a report of experimental
observations, see Ref. § in which the mode u = +1 is illustrated in
Figs. 3 and 4d) and/or different losses. The scalar approximation is

radiation losses if these losses are polarization dependent. This is the
case, for instance, if the propagation constant of the rod mode lies
between the propagation constants of the slab E and H modes. Because
the split between these two modes is very small, this is unlikely to
happen unless the optical waveguide has been specially designed for
that purpose. In that sense, the scalar approgimation may be applied
to problems of radiation losses.
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