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Spontaneous Emission in Semiconductor
Laser Amplifiers

JACQUES ARNAUD, SENIOR MEMBER, IEEE, JEAN FESQUET, FRANCOIS COSTE, aNp PIERRE SANSONETTI

Abstract—In a mode matched configuration, spontancous emission in
semiconductor laser amplifiers is enhanced by a factor which is larger
than unity but which is significantly smaller than the K-factor calculated
by Petermann, Using thin-slab model, we find that in typical situations,
the factor is about K 2.

I. INTRODUCTION

N optical communication systems, it may be advisable to
. __aplify weak optical signals before detection. If the laser
gain is large enough, the noise-to-signal ratio at the detector
output may indeed be as low as

NS = 4hf[P, (1)

independently of the detector noise (e.g., thermal noise). In
(1), S denotes the square of the signal detected current, N is
the average square of the detected current fluctuations per
unit bandwidth, hf represents the photon energy, and Py is the
received optical power assumed to be independent of time.
The simple result in (1) applies only when the lower level of
the laser medium is unpopulated (ground state population den-
sity << upper state population density) and the signal fre-
quency is at the line center. Among the various noise terms
that can be found at the detector output, we have retained in
(1) only the beat term between the signal field and the field
spontaneously emitted by the amplifying medium. This is in
general a permissible approximation when the laser gain is large.
F 1 more complete discussion, see [1]-[3].

~sefore we can apply (1), it is necessary to examine in detail
the mechanism of guiding and amplification of the optical
wave. Indeed, Petermann found a few yearsago that the power
emitted by spontaneous emission in gain-guided semiconductor
lasers is enhanced by a factor K that may be as large as 50 in
typical situations [4]. Mostauthors concluded that gain-guided

lasers are intrinsically more noisy than index-guided lasers .

and that, consequently, they should not be used in optical
amplification.

Let us briefly review the Petermann argument. In gain-guided
lasers, the real part of the refractive index is smaller in the cen-
tral region than outside that region, so that the system would
guide only leaky modes (that is, modes whose field increases
exponentially as a function of the transverse coordinates instead
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of being confined, as is the case of ordinary guided modes) if it

were not for the medium gain. As we increase the medium
gain, there is a threshold beyond which the fundamental mode

of propagation becomes normally guided with an exponentially
decaying field, and the propagating wave experiences a net
gain [5]. The wavefront of the mode is curved, however, or in
other words, the modal field is a complex function of the trans-
verse coordinates.

On the other hand, it is well known that the medium gainis a
stimulated emission process which is always accompanied by a
spontaneous emission process. The later can be modeled by an
assembly of dipoles radiating independently of each other.
Each dipole can be represented by a Dirac §-function, and ex-
panded in a series of the modes of the guiding structure, which,
in the present case, are complex functions of the transverse co-
ordinates. Petermann [4] has then shown that the spontan-
eous emission power in the fundamental mode, interpreted as
the integral of the square modulus of the fundamental modal
field spontaneously emitted, is enhanced by a large factor K,
compared to the case where the modal fields are real functions
of the transverse coordinates. The latter case is often improp-
erly refered to as that of “index-guidance.” This is improper
because wavefront curvature appears as soon as the gain is
larger in the central region than outside, whether the real part
of the refractive index increases (gain-guidance) or decreases
(index-guidance) as a function of the transverse coordinates.
The effect of wavefront curvature is usually stronger in the
case of inverted real index profiles, but strong wavefront cur-
vature effects can also be found for normal guidance if the
guidance is weak (thin slabs).

Arnaud [6] pointed out that the spontancous emission power
in the mode evaluated by Petermann is not the physically rele-
vant quantity. At the output of the laser amplifier, the spon-
taneous emission field should be evaluated in a power-orthog-
onal system of modes. In particular, the quantity that enters
into (1) as NV is the integral over the detector area of the prod-
uct of the signal field and the spontaneously emitted field, one
of the two being complex conjugated. In that way, one getsa
noise enhancement factor K' which issmaller than Petermann’s
K-factor. If the laser is short, that is, if mode filtering has
virtually not taken place, then there is no noise enhancement
at all, that is, K"=1 [6]. If, on the contrary, the laser length
is large, so that mode filtering is strong and only the funda-
mental mode of propagation survives at the laser output, and
furthermore, if the input field coincides with the fundamental
mode, then Arnaud’s K'-factor coincides with Petermann’s K-
factor. The purpose of this paper is to give a precise value for
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the K'factor inintermediate situations. We will consider typical
laser gains such as 10 dB, and typical laser lengths such as 200
um. The K'factor calculation is meaningful only for a multi-
moded guiding system. In order to make the problem mathe-
matically tractable and obtain closed-form expressions, we
have considered as a simple model a reactive surface. A reac-
tive surface is basically free-space with a boundary condition
that relates the field and its first derivative at x = 0. Specifically,
we set -(dE/dx)/E = s and call 5 the susceptance. Usually, s is
a real positive quantity. Then the reactive surface can support
one guided mode whose field decays according to an exp
(—s|xf) law and a continuum of radiation modes that play the
role of higher order modes. A reactive surface can be viewed
as a dielectric slab whose thickness goes to 0 but whose product
of permittivity and thickness remains finite (Fig. 1).

In order to get gain, we consider complex values of the sus-
ceptance s and set s=a - ib, b > 0 (an exp (-icw?) time depen-
dence is used throughout). Such a complex reactive surface
again sustains only one guided mode, and a continuum of radia-
tion modes. These modes can be defined from the analytic
continuation of the modes in the real case.

The paper is organized as follows. In Section I, we give a
general expression for the N/S ratio. In Section III, we give
the modal properties of the thin slab. In Section IV, these re-
sults are applied to the general expression of Section II, and an
almost closed-form expression for the K'-factor is given. In
the final section, numerical results are presented and a compar-
ison is made with purely numerical results obtained for realistic
laser configurations using the beam propagation method. A
brief account of these results has been reported in [7].

After submission of this paper, we were informed of an im-
portant paper by Haus and Kawakami [8]. These authors
show that for very large laser lengths (were Arnaud’s K’ is
almost equal to Petermann’s K), the optimum input field is
not the fundamental mode £,(x) but its complex conjugate
E3(x). For the particular input field, the gain is enhanced by
the same factor K >> 1 as the noise, and therefore, gain-guided
laser amplifiers may not be more noisy than index-guided am-
plifiers. In other words, contrary to intuition, one should not
try to mode-match the input field. While E¢(x) represents a
wave with diverging wavefront at the input facet, the optimum
field £¥(x) represents a wave with the same amplitude distri-
bution but with an opposite (converging) wavefront. The opti-
mum input field for laser amplifiers of finite length remains to
be investigated, perhaps along the lines of this paper.

A word is in order concerning laser oscillators. Petermann’s
paper [4] was in fact specifically oriented toward laser oscil-
lators; even so, his results have been widely interpreted as being
also applicable to laser amplifiers. We have extended our thin-
slab model to laser oscillators with plane cleaved facets and
were able to show analytically that the fundamental mode in-

tensity [from the first term in (15)] is equal to the total
optical field intensity [given simply by |« - is|™? in the nota-
tion of (15)] well above threshold. This result validates Peter-
mann’s introduction of the K-factor, at least with respect to
the evolution of the electron density well above threshold.
But the situation is not so clear near threshold. The subject of
laser oscillators is not addressed in detail in the present paper.
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Fig. 1. Thin slab model of a laser amplifier. Input plane: z = 0, output
or detector plane: z= L. The slab is normally guiding and has gain.
It is characterized by a susceptance s =a -ib,a > 0, b > 0, E4(x, 0)
represents the input field, supposed to be in the fundamental mode of
propagation.

1. GENERAL FORMULATION

The problem of optical amplification is defined as follows.
Consider a volume ¥ containing atoms all in the excited state.
That is, we assume for the sake of simplicity a complete popu-
lation inversion. (This condition is not achieved in semicon-
ductor lasers, and the noise is increased by a factor of the
order of 2 with respect to the values presently calculated.) Be-
cause of stimulated emission, this collection of atoms can be
characterized by a complex index of refraction

n=n. +in; (2)

where -(w/c)in; = g represents the local gain, proportional o
the population density of the atoms in the upper state. The
variation of g with the optical frequency is Lorentzian for free
atoms and assumes a more coniplicated shape for semicon-
ductors. The variation of the real part of the refractive index
as a function of the optical frequency is related to that of the
imaginary part, plus a constant that may be due to nonresonant
states. In this paper, we will assume that the signal optical fre-
quency is at the line center and that the line shape is sym-
metrical, so that both sides contribute equally to the baseband
noise. It is, of course, assumed that there are many atoms per
optical wavelengths, so that it is meaningful to characterize the
medium by a refractive index. This is so evenif very few atoms
actually make a transition to the lower state.

For the sake of simplicity, we will ignore polarization effects
and assume that the optical field obeys the paraxial wave qua-
tion

L0E w 1 (BZE aZE)

e e P2 ) Bt —— +
e~ ¢ (mpite, ml o s

(3)

where ko = (w/e)n, (0, 0, z) is supposed to be a real constant,
Its imaginary part can indeed by neglected in the last term of
the above wave equation.

The active region extends from z=0 to z= L.
power gain can be defined as

Thus, the

G= ff|£,(x,y,!,)|= dx dy/f |Eo(x, 9, 0)|* dxdy  (4)

where the integrals go from x, y = -0 to +eo, The E(x, y, z)
field functions are so normalized that | E|? is the power density.
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The s subscript refers to the input optical signal. If now Egp(x,
y. L) denotes the optical field generated by spontancous emis-
sion at the detector plane (z = L), the beat between the ampli-
fied signal field and the spontaneously emitted field results at
the output of the detector in a noise spectral density N given
by

2

jjﬁf(x,y, L) Eg(x, y, L) dx dy
]
K fff:{x,y,f.) E((x,p,L)dx dy

where £4(x, ¥, L) is, as before, the signal field at the detector
plane and the denominator in (5) is evidently GP,. The field
at z =z, spontaneously emitted by a volume dV = dxqdyodz,
centered at Xy, Yo, 2o 1S

= (5)

A
s

1(—"5,1’-30;-10;]30,20)

= [2hf g0, Vor Z0) dV]? - 8(x - x0) 6( - ¥0)- (6)

Both Ky, and N are relative to a unit bandwidth, optical and
baseband, respectively. Note that the stimulated-emission gain
g enters into the expression of the spontaneously emitted field
under a square root so that the spontaneously emitted power
is proportional to g. The field defined at z=z, by (6) prop-
agates along the z-axis according to the wave equation, (3). In
that way, we can obtain the field Eg,(x,», L) that enters into
the N/S expression in (5). The last integration is over the active
volume V. The differential element d Vappears under the square
root in (6). It can be shown that (5) reduces to (1) when the
medium gain is uniform, that is, when g = constant. This just-
ifies the weighting factors introduced in (6). Note that (6) is
valid only for the paraxial approximation. One should not at-
tempt to calculate the total spontaneously emitted power
from that expression, The field radiated at large angles is in
fact irrelevant to our problem, since we are only concerned
w.__ihe coupling to paraxial modes.

[11. THE TaiN SLAB MODEL

In 2 double heterojunction semiconductor laser, guidance of
the optical field is ensured by a slab of material of refractive
index higher than that of the surrounding medium. The slab
thickness is on the order of 0.1 um and the optical field is
strongly confined, with mode-thicknesses of the order of 1 um.
It is recalled that at a typical wavelength of 1.3 um, the wave-
length in the material is on the order of 0.4 um. Because of
the strong optical confinement, the curvature of the wavefront
of the fundamental mode of propagation is negligible. Let us
recall that the wave gets power only in the central active re-
gion, and that this power must flow outside into the gainless
outer regions in order to sustain a growing wave. This power,
however, does not propagate to infinity. Indeed, it can be
shown that as soon as the wave is amplified, the field amplitude
decays exponentially in the transverse direction [5].

For reasons that may be considered at the moment academic,
we shall consider extremely thin active regions, with thick-
nesses of the order of 0.01 um. Such very thin active regions
are actually found in quantum-well lasers, but then separate

confinement is added in order to increase the gain. Our moti-
vation for considering very thin active regions (without any
other optical wave confinement) is that the wave is then weakly
guided, wavefront curvature may have strong effects, and large
Petermann K-factors appear. In other words, while Petermann
introduced the K-factor in connection with gain guidance in
the junction plane, we find it more tractable from a mathema-
tical standpoint to treat the case of an active region which is
very thin in the direction perpendicular to the junction plane.

As we discussed in the introduction, for small slab thicknesses,
a diclectric slab can be replaced by a reactive surface. In the
limit where its thickness 2d goes to 0 and n? goes to infinity
in such a way that :

s=kidin® - D=V?d;, ko=wfe (7)

is finite, we simply need to impose upon the field the follow-
ing boundary condition at x = 0:

Y . ®
&

More precisely, -2s is the discontinuity of (dE/dx)/E above
and below the reactive surface. But here, only symmetrical
solutions need to be considered. It is then well known that
the unique guided modal solution is

E(x,z) = exp (-s|x|) exp (iBz)
B=ko+ 5 s/ko ©

if s is real and positive. The solution in (9) describes a wave
propagating along the z axis with propagation constant § > wie
and exponential decay along the x axis (perpendicular to the
junction plane). Now let the slab permittivity n? have an im-
aginary part: n® = ¢, + i¢;. The imaginary part &; <0 expresses
the fact that there is gain in the slab. As a consequence we
may set from (7)

a>0,b>0. (10)
The solution in (9) remains formally applicable. We have
E(x,z) =exp (-a|x|) exp {i[b]x| + .21} exp (vz) . (11)
where we have set :
B=p, - iy (12)
where 7 is the gain of the wave. The power gain is
G=exp(2vL), +v=ablky (13)

where 1, denotes the laser amplifier length. Note incidently
that the thin slab currently considered can sustain a guided
wave only if it is normally guiding (2> 0). In order to get
guided waves with inverted real-index profiles, we need two re-
active surfaces separated by some nonzero spacing, say D. In
the present paper, only single normally guiding reactive surfaces
will be considered.

It is very easy to calculate Petermann’s K-factor with our
model. We get

e f1e o] [

s=a-ib;

2
) =1 +(b/a)*. (14)
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Thus, if b/a =7, for example, we get from (14) K = 50. How-
ever, as we shall see, the effective noise-enhancement factor
K' under mode-matched conditions is not given by K but by a
more complicated expression involving the radiation modes
(or, more generally the higher order modes). It is significantly
smaller, The X-factor given by Petermann would be applicable
directly to the expression of the signal-to-noise ratio only if
there were no complex conjugation of £ in (5), or if the spon-
taneous emission power were all in the fundamental mode at
the laser output (and the signal field were mode-matched at
the input). As a matter of fact, higher order modes (or radia-
tion modes) play a significant role.

Thus, let us consider the general expression of the field radi-
ated by a 5(x) source located at z=2z, and x =0 in the pres-
ence of a reactive surface whose (possibly complex) suscep-
tance is denoted s as before. The field at location x, L is [9]

G(x,L,z¢)=se™ exp [f(ko +% s‘,fko) (L- zo):|

oo
u
+2f ——————— ('COS UX = $i5in LX)
o Mt +s?) (

: exp [l'(ku ¥ %le."ko) (L= Zu)] du. (13)

In this equation, x stands for |x| the solution being even in
x. The first term in (15) is the field of the guided mode ex-
cited by the source and the second term is an integral over the
radiation modes. [t can be verified that the rhs of (15) satis-
fies the wave equation, (3), and the boundary condition in (8).
Furthermore, the rhs of (15) reduces to a & (x) functionas L =
2p [the cos term in the integral is one form of a Dirac §-func-
tion, while the sine term cancels out with the exp (-sx) term).
Note the orthogonality in the sense of the simple product of
the modal functions in (15), even if s is complex, provided the
integrals exist.

Let us now consider the field spontaneously emitted by a
length dz, of the reactive surface. It is given by the rhs of
(15) multiplied by the factor

[2hf(blky) dzo] 2. (16)

To obtain this factor we have replaced g in (6) with b/2kd ac-
cording to (7), which gives a correspondence between the slab
of nonzero thickness and the b-parameter relative to the reac-
tive surface. We have also performed an integration over xg
from -d to +d and taken the limit kod = 0. '

The incident field, on the other hand, is taken to be in the
fundamental mode, that is,

Eg(x,L) =\/aP, e exp [i(ko + % §*/ko)L] (7

where P, denotes as before the incident coherent optical power
to be amplified. Note that the wavefront is curved in a diverg-
ing manner. Without loss of generality, the phaseat x=2=0
is taken to be zero.

When we substitute the expressions in (17) for the signal field
and (15) and (16) for the spontaneously emitted field into the
general expression in (5), we find that some of the integrations
can be performed in closed form.

40 F
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Fig. 2. The function f expresses the noise enhancement factor for spon-
tancous emission from a location at a distance zg from the input
plane. f=1 when 2y = L = 200 um. The slab susceptance (in um 1)
5=0.12 - ¢ 0.84 and the free-space wavelength is 1 um.

Using the identity
f (u cosux - s sinux)e "= dx=-2ibul(u® +5**) (18)
0 :

where the star denotes as before a complex conjugation, we
arrive at the following expression for the effective noise en-
hancement factor:

L
K’ f 27e 2" f(z,) dz, (19)
(1]

where

diab -ig(L -zp) fw
2o )=K |1 = ——
1(z0) 1 7S e )

i 1 u? 2
u® exp l(ko =5 . (L=2y)
0
. d 20
(uz +sz){u2 _!_5*2) u { )

is equal to 1 when 2z, =L, and K =1 + (b/a)* when L - z, is
large.

B=ky+ L 5%k, (21)

is the propagation constant of the fundamental mode.

IV. NuMmERICAL RESULTS

We have plotted in Fig. 2 the function f(z,) given in (20) for
a set of the @ and b parameters. As expected, for that part of
the spontaneously emitted field that originates near the output
end of the laser amplifier, there is no noise enhancement at all:
f=1, because the spontaneously emitted field essentially re-
mains a 5-function. On the contrary, for that part of the spon-
taneously emitted field that originates from the input end of
the laser amplifier, the spontaneously emitted field is essentially
in the fundamental mode at the output and Petermann’s factor
applies: f= K. What matters in a laser amplifier is, however,
the total noise emitted by the active region fromz=0toz = L.
This average quantity K ' (or rather K '/K) is given in Fig. 3,
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Fig. 3. Ratio of the effective noise enhancement factor K' to Peter-
mann’s K-factor for a very thin slab semiconductor laser amplifier of
length L =200 um, gain G = 10 dB, and different mode thicknesses
2e = log(2)/a. Also shown is Petermann’s K-factor from (14), in loga-
rithmic scale. The free-space wavelength is 1 pm. The medium out-

le the slab is assumed to be free-space, for simplicity.

G(d8/mm)
o _103
'2‘102
10
s
1073 102 <107 d(pm)

Fie. 4. This figure compares the thin-slab (or reactive-surface) approxi-
ition (dashed lines) to exact numerical results (plain lines). In the
“nitter, the freespace wavelength is 1 pm, the slab relative permittivity
is 13 -7 0.3 in a2 medium of permittivity 12.9. The slab thickness is
2d. T represents the confinement factor, G the power gain in dB/mm,
and K Petermann’s K-factor.

for the case of a 10 dB laser gain and a laser length of 200 um.
It is plotted as a function of the modal width 2e. Thisquantity
is so defined that half the power of the fundamental mode is
comprised between x = -¢ and +e.

As one can see, for typical laser gains and lengths, K’ may be
on the order of half the K-factor.

One may wonder whether the thin-slab approximation, in
which we let the refractive index n go to infinity, is applicable
to guiding systems where the relative change of index is on the
order of 1 percent. Fig. 4 gives ananswer to that question. For
a slab of thickness 24, and real permittivity change of 0.1 (An/
n=0.4 percent), we have plotted the exact numerical results
for the confinement factor, the gain, and the K-factor (plain
lines) and compared them to the thin-slab approximation. We
find that the approximation for K in (14) is very good up to
slab thicknesses on the order of 0.02 um,

300 Zuu.lm}

Fig. 5. This figure isanalogous to Fig. 2, but applies to the junction plane
of a gain-guided laser, and is obtained by purely numerical calculations
and application of (5). The integration over z, however, has not been
performed. Stripe width =13 pm, current density J= 2.7 kAjem?.
Net gain = 10 dB.

We have also used a purely numerical technique to evaluate
the f-function of (19) for a realistic model of gain-guided laser.
This time, the f or K' factors refer to the junction plane as in
Petermann’s work. The result is shown in Fig. S. Here again,
we notice that fis close to K when spontaneous emission takes

place near the input (zo =0) and is unity when zg = L (here’

L =300 um). To obtain these results, we have first used the
effective-index method in the junction plane. Then the beam
propagation method has been used to proceed from some ini-
tial field distribution to the output plane. To obtain the fun-
damental mode of propagation, we let an arbitrary field prop-
agate back and forth along the structure until a steady situation
occurs. This gives us the signal field, since we have assumed,
somewhat arbitrarily, that the signal field at the input is in
the fundamental mode of propagation. For the spontaneously
entitted field, we have used as the input field a narrow Gaussian
field (in place of the Dirac function) located at z =z,, and
again used the beam propagation method. Finally, the basic
equation (5) is used. The integration over zo from 0 to L,
however, is rather trivialand is not presented here. The realistic
calculations presented here for gain-guided lasers are seen to be

in qualitative agreement with the results obtained before for
thin slabs.

V. CoNcLuUSsION

In a previous paper [6] one of us had suggested that the
spontancous-noise enhancement factor K obtained by Peter-
mann had to be reconsidered, because the noise powers must
be defined in a power-orthogonal system at the laser output.
In this paper we have calculated precise values for the effective
noise-enhancement factor (K') and found that under the mode-
matched input field configuration, it is about half the K value
(laser length = 200 pum, gain = 10 dB). Let us emphasize that
these results apply to laser amplifiers under mode-matched
conditions. It is not entirely clear how they apply to laser
oscillators. In laser oscillators the useful field is essentially in
mode-matched conditions, because the cleaved facets are plane
and perpendicular to the propagation axis. Therefore, this
condition of validity of our paper is fulfilled. The next ques-
tion is whether or not spontaneous emission is strongly filtered.
On that respect, it should be remembered that, because of
spontaneous emission, the laser gain per pass is significantly
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smaller than the reciprocal of the facet power reflectivity, and
that consequently, an elementary radiating dipole (simulating
spontaneous emission) has its radiation emitted only after a
few passes, and modal filtering need not be large. If thisis the
case, this paper has relevance also to laser oscillators near
threshold. This will need further investigations.
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