Representation of Gaussian beams by complex rays

This paper shows that a fundamental Gaussian beam propagating in a lenslike medium with cylindrical sym-
metry can be generated by the rotation about its axis of a skew ray which obeys the laws of geometrical op-
tics. A complex representation: X(z) = £(z) + jn(z), where £(z) and n(z) are the projections of the skew
ray on two perpendicular meridional planes, is discussed. It is found that the beam radius is equal to the
modulus of X (z) and the on-axis phase to the phase of X(z). Using this representation, we derive a general
expression for the on-axis phase shift A% experienced by a beam with an input complex beam parameter g

matched to the optical system (output ¢ = g), A® can be written cas™!(A + D)/2. This representation also
provides a useful beam tracing method which is demonstrated and a simple interpretation for the known

Jacques Arnaud
through an optical system whose ray matrix is
representation of Gaussian modes by ray packets.

I. Preface Il. Introduction

This paper was first issued as an internal Bell Labs.
memorandum, 10 Oct. 1968, and widely distributed
within the Bell system. My basic ideas of representing
a Gaussian beam by a complex ray or by a complex
coordinate shift were published at that time in Applied
Optics (Refs. 12 and 13), but the paper itself was not
submitted for publication. The motivation for pub-
lishing now this 16-year old paper stems from a renewed
interest in our beam tracing procedure (see, e.g., Ref.
21). Many details, particularly concerning the wave
front, have never been published to my knowledge and
seem to remain of practical interest. Note that the
word “phase A®” used in the paper in fact stands for
phase difference. The trivial geometrical phase shift
has been omitted. In Secs. IIl and IV the simple as-
tigmatic Gaussian beam case is treated explicitly, while
in Secs. V-VII more usual circular Gaussian beams are
considered. More recent works, discussing general
astigmatism and more general complex-coordinate
shifts, are briefly reviewed in the Appendix. The paper
is presented here exactly in its original form except for
the addition of the Appendix, this preface, and the fig-
ure captions.
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A Gaussian beam can be defined by a complex beam
parameter ¢ = go + z where g is a complex quantity
and z is the axial coordinate.l* The real part of g, gives
the beam waist position and its imaginary part gives the
beam waist radius. The beam radius, the phase front
radius, and the phase of the on-axis field at an arbitrary
plane are also simply related to g. Kogelnik! gave the
general law for transformation of ¢ through an arbitrary
optical system defined by its ray matrix: ¢ is trans-
formed by the same law as the wave surface curvature
radius [X(z)]/(d X /dz) of a homocentric ray pencil. No
distinct meaning was attached, however, to X(z) or
dX/dz separately for the representation of Gaussian
beams. It is the purpose of this paper to show that a
Gaussian beam can be represented by a complex ray
X(z) which formally obeys the laws of geometrical op-
tics. This representation provides a general expression
for the on-axis phase shift that the simple consideration
of the complex beam parameter ¢ fails to give directly.
In free space, the on-axis phase shift is given by the
phase of g. The on-axis phase shift experienced by a
beam as it propagates through an optical system can

consequently be obtained by steps, from lens to lens. .

This conventional procedure was used by Kogelnik? to
calculate the resonant frequency of a linear cavity in-
corporating arbitrary optical elements. We will show
that a more general result can be obtained directly from
the proposed representation.

Bykov and Vainshtein* and Kahn® have shown that
the profile of the fundamental mode of a cavity is the
envelope of a properly launched ray which bounces back
and forth on the end mirrors. Steier® generalized this



result to the case of propagating modes and noted that
the bisectrix of two rays at a given point intersects the
optical axis at the center of curvature of the wave front.
We will show that these properties readily result from
the following observation: A Gaussian beam propa-
gating in a lenslike medium with cylindrical symmetry
can be generated by the rotation about its axis of a skew
ray which obeys the laws of geometrical optics. The
complex ray X (z) mentioned above is a complex rep-
resentation of this skew ray.

The representation of a Gaussian beam by two rays,
the real and imaginary parts of X(z), provides a method
of tracing its transformation through an optical system
using ordinary ray tracing. This method is simpler, in
some cases, than the method based on the Smith chart?
or on the lateral foci,?? and it gives directly the beam
profile.

The following discussion is restricted to fundamental
Gaussian beams with simple astigmatism!® and to or-
thogonalll astigmatic optical systems.

lll. General Expression for the Field of a
Fundamental Gaussian Beam

The conventional expression for the field of a fun-
damental Gaussian beam propagating in free space? can

be written
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where xy2 is a rectangular coordinate system, z being
the beam axis, and k& = 2«/A is the free space propaga-
tion constant. A factor exp(—jkz) has been omitted in
Eq. (1) for simplicity. The complex beam parameter
in the xz plane g, (z) is a linear function of z;
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where z,o and w, are, respectively, the beam waist
position and halfwidth. A similar expression holds fér
gy(z). Note that, when ¢.(z) and g,(z) are real (w,o =
wyo = 0), Eq. (1) gives the field of an astigmatic ray
pencil in free space, the beam waists reducing to focal
lines.
In the more general case where the ray pencil is
transmitted through an orthogonal!! lenslike medium,
the field can be written
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where n(z) is the on-axis refractive index and X (z) and
Y(z) are the equations of two rays limiting the ray pencil
in the xz and yz planes, respectively. The term in front
of the exponential in Eq. (3) simply results from the
conservation of power since the pencil cross-section area
is proportional to X (z)Y(z). For simplicity, a phase
factor exp[—J [§ kn(z)dz] has been omitted. In Eq. (3),
gy (2) is defined by

X(z)
dX/dz

gelz) = (4)

and g, (z) by a similar expression. In free space, n(z)
is equal to unity and (dX/dz),(dY/dz) are constant
since the rays are straight lines. Equation (3) then re-
duces to Eq. (1) within a proportionality factor.

We will show that Eq. (3) gives the field of a Gaussian
beam propagating through an arbitrary orthogonal
medium if X(z) and Y(z) are considered complex
quantities. It turns out that the on-axis phase can be
obtained from Eq. (3) without further specifying X(z)
and Y(z).

IV. On-Axis Phase Shift Experienced by a Beam
Through an Optical System

The phase of ¥(0,0,z) given by Eq. (3) is
$(z) = — ¥, [phase of X{z) + phase of Y(z)]. (5)

Let us use this expression to calculate the on-axis phase
shift experienced by a beam between the input and
output planes of a lossless optical system characterized
by ray matrices
M, = [A, B, A, B,l
C; D, Cy Dy
in the xz and yz planes, respectively. If we denote the
derivatives with respect to z by an upper dot and the
output quantities by a prime, from Eq. (3) we get

] and M, =
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where ¢, and g, are the input complex beam parame-
ters.

In free space, with A, = A, = 1 and B, = B, = z, from
Eqgs. (6) and (2) we get '

Ad=-1 [phase of& + phase of 9 , (7)
s Qy

which could have been derived directly from the form
of ¥ in Eq. (1). Inthe simple case where the beam has
a cylindrical symmetry and a beam waist radius w at

e
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the phase shift is given, from Eqgs. (7) and (2), by the
well-known expression?

wws

A® = tan~! [L] . (8)

For application to optical cavities, we are mostly in-

terested in the phase shift experienced by a matched

beam (¢, = ¢, and g, = g,) through an optical system

such that n’ = n. ¢, is given in that case by the self-
consistency equation!
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and g, by a similar expression. Introducing the solu-
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tion of Eq. (9) which has a positive imaginary part into
the last Eq. (6), we get

LA+ Dy
2

_A+D,

+ cos (10)
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if we remember that'!' A, ;D , — B, ,Cyy = (n/n) =
1. For a linear cavity with cylindrical symmetry, Eq.
(10) reduces to the expression obtained by Kogelnik?
using the method outlined in Sec. I1:

%qw' Vad, (11)

where [: b‘ is the one-way ray matrix of the cavity.!213

d
Equation (10) shows that exp(+jA®) are the ray matrix
eigenvalues.

V. Beamwidths

Let us consider first a Gaussian beam with cylindrical
symmetry propagating in a homogeneous medium with
a refractive index n. It is well known that the curve
w(z) is the profile of a hyperboloid of revolution which
may be called the beam surface. It is also known that
a hyperboloid of revolution can be generated by a skew
line rotating ahout the axis as shown in Fig. 1. Let us
consider a generating skew line whose intersection with
the beam waist plane is oriented at an angle 6 with re-
spect to the y axis. The projections of the skew line on
the xz and yz planes are, respectively, given by

2z
E(z}] _ [costl —sinﬂ‘ knuwq (12)
n(z)] lsind  cosf Jw

wy being the beam waist radius and the origin of z being
taken at the beam waist. The beam surface is generated

by the skew line described by Eq. (12) as f/ varies from

0 to 2w. Equation (12) can be written explicitly as

£(z) = —wy sinfl + .2 cosfl,
Ny
e
nlz) = wy cosl + sinfl. (13)
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We remark that the quantity
5 2
nlEz)n(z) = £(z)nlz)] = (14)

is invariant as the beam propagates in free space. Itis
easy to show that this quantity is also invariant as the
beam propagates through any optical system with cy-
lindrical symmetry.

Let us show that when a Gaussian beam is trans-
formed by a thin lens the generating skew rays are
transformed according to the laws of geometrical optics.
[Since the congruence of the generating skew rays is not
normal, however, they do not form a ray bundle in the
sense of geometrical optics. [For a definition of normal
congruences see, for example, M. Born and E. Wolf,
Prineiples of Optics (Pergamon Oxford, 1965), p. 126.]}
It is sufficient to prove this property for the particular
generating skew ray which intersects the lens at a point
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Fig. 1. Gaussian beam represented by a skew paraxial ray rotating

about the z axis. At any z value, the beam radius is the distance be-

tween the ray and the z axis. Furthermore the angular position of

the ray gives the difference between the phase of the optical field and
the geometrical phase shift.

BEAM PAOFILE (az) PLAN

Fig. 2. This figure shows how one can trace the refraction of a
(Gaussian beam by a lens by tracing two paraxial rays using conven-
tional procedures.

in the xz plane. Its projection £(2) on the xz plane is
tangent to the beam profile and it is refracted as the
beam profile itself, according to the laws of geometrical
optics (see Fig. 2). Its projection 7(z) on the xz plane

is equal to zero at the lens plane,z = I. Then Eq. (14)

shows that
e = n’ £ ), (15)

and since £(1) = ¥(l), we have ni(l) = n’#’(l). Conse-
quently, 7(l) also obeys the laws of geometrical optics
[Fig. 2 is drawn for n = n’; in that case, the ray 5(z),
going through the lens center, is a straight line]. This
result is readily generalized to the case of an arbitrary
orthogonal lenslike medium by substituting for a short
section of such a medium a thin lens and a short section
of homogeneous medium. The left-hand side of Eq.
(14) is still an invariant, n being in general a function
of z. 'The generating skew rays, of course, are no longer
straight lines, in general.

We may relate the representation discussed above to
the ray packet representation of Gaussian modes*® by
considering the projection of all the generating skew
rays on a meridional plane. Their envelope is the beam
profile. This result was obtained in a slightly different
form by Bykov and Vainshtein,* Kahn,” and Steier.®

Let us further remark that there are two generating
symmetrical skew rays going through a given point on
the beam surface. Considering the rotation about the
axis of a point of the generating skew lines, one of them
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may be said to be clockwise (+) and the other counter-
clockwise (—). Because of the symmetry, the beam
profile at the point considered (i.e., the intersection
between the beam surface and the meridional plane
which contains that point) is tangent to the bisectrix of
the two generating skew rays. Since this property is
preserved on projection, we conclude that the bisectrix
of any two projected skew lines is tangent to the pro-
Jected beam profile at the intersecting point. The in-
tersection of this bisectrix with the axis is consequently
the center of curvature of the wave front. This is, in
substance, the result obtained by Steier.

VI. Complex Representation of the Skew Ray

We can now establish a link between the discussion
of Sec. V and the results of Sec. IV by using a complex
representation for the generating skew ray, x being
taken as the real axis and y as the imaginary axis. We
define the complex ray X(z) by

X(z) = &(2) + jn(8). (16)

[This representation is quite different from the phase
diagram (position-slope) discussed by D. Gloge and D.
Weiner (private communication).] Ina homogeneous
medium of refractive index n, substituting Eq. (13) into
Eq. (16), we have

2exp(j) ( jknw.g) 2 exp(jf)
Z-o = q.
Won 2

Xiz)= (17)
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From Eq. (5) the on-axis phase shift is
—% = phase X(z) = ! + phase of g(z). (18)

This expression shows that the choice of f simply de-
termines the phase reference.

With this complex representation, the left-hand side _

of Eq. (14) is proportional to the equivalent power
Ya(VI* + IV*) in the electric circuit equivalenced! V
—+ X(2),1 — jn(z2)X(2).

VL. Beam Tracing

In the previous sections we have shown that a fun-
damental Gaussian beam can be represented by two
rays £(z) and n(z) which obey the laws of geometrical
optics. The beam profile is w(z) = [£(2)2 + 3(2)2]1/2
and the on-axis phase is ® = —tan=19(z)/£(z). This
representation provides a method for tracing the beam
profile and its on-axis phase as it propagates through
an optical system.

If a Gaussian beam is known by its beam waist radius
(wo) and position, we may take £(z) as a line parallel to
the axis at a distance w, from it, and 5(z) as a line
crossing the axis at the beam waist plane with an angle
equal to the far-field angle A/mw,. Neither of these two
rays, after transformation by an optical system ac-
cording to the laws of geometrical optics, is any longer
parallel to the optical axis, in general. Figure 3 gives
a procedure, based on descriptive geometry, to find the
beam waist in that case (6 > 0, modn/2) with the help
of an auxiliary projection on the xy plane. In this xy
plane, the minimum distance between the skew line and
the z axis (beam waist) is given by the perpendicular
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Fig.3. Procedure to determine the waist of the beam using an aux-
iliary projection on the xy plane.
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Fig. 4. Determination of the wave front curvature center C. Here
the projections of two skew rays need to be traced.

drawn from the origin to the projected skew line. Their

intersection is easily drawn back into the xz and yz
planes.

The phase front center of curvature C at any plane
can be obtained by tracing the other generating skew ray
passing through the same point. Its xy projection,
shown as a dashed line in Fig. 3, is symmetrical to the
given projection (plain line) with respect to a line drawn
from the origin. Since C is on the bisectrix of the two
skew rays, it lies in the plane that they form and it is, by
definition, on-axis. C is consequently aligned with the
intersections of the skew rays with an arbitrary merid-
ional plane. A convenient choice for this meridional
plane is the plane which makes an angle of 45° with .
The intersections /- and I'* with that plane are given
by the intersections of the projected lines (&t =yt and
£~ = n7) and are readily obtained, as shown in Fig. 4.

Another procedure, consisting of constructing the
lateral foci and using the method of Deschamps and
Mast,® is probably preferable if the phase front centers
have to be known at many planes. The lateral foci can
be obtained by noting that the phase front curvature
center is easily obtained at the plane where £(z) and n(z)
intersect. £(z) and 5(2) are indeed conjugate rays for
a fictitious mirror situated at that plane with a radius
equal to the phase front surface radius.
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Fig. 5. Application of the method to a simple problem: The re-

fraction by a lens of a beam whose waist coincides with the focal plane

of the lens. The tracing readily shows that the beam waist after
traversing the lens is located at the image focal plane.

VIll. Application

The construction method outlined above is applied
in this section to a simple problem. Let us find the
output beam waist radius and position assumed by a
beam which has passed through a lens, when the input
beam waist is at the object focal point. The tracing
readily shows that the beam waist is at the image focal
point of the lens as illustrated in Fig. 5.

The author expresses his thanks to D. C. Hogg for
useful comments.

Appendix

The purpose of this Appendix is twofold. First, to
explain perhaps more clearly the principle of the com-
plex ray representation of Gaussian beams. Second,
to discuss more recent works (1968-1984) on the subject.
A review, however, is not intended.

Let us suppose that we have been able to find the
solution of a partial differential equation describing the
propagation of waves in some medium and that this

solution depends on arbitrary real parameters. Then, -

physically different solutions are found by giving
complex values to these parameters, provided the
complex values that result for the wave function can be
given a physical meaning. More specifically, let us
consider a time-harmonic field. As usual an exp(jwt)
factor is suppressed with the understanding that,
whenever the real field is wanted, the complex field is
to be multiplied by that exp(jwt) factor and the real
part is to be taken. Let us further assume that the
medium is invariant for an arbitrary translation z, along
some propagation axis z. In other words, the medium
is supposed to be homogeneous along z. This is the case
for uniform waveguides. Then, for obvious physical
reasons, if £(z) is a known solution, E(2 — z), where z,
represents a real displacement, is also a solution. New
physics is obtained, however, and somewhat unexpected
solutions discovered, if complex values of the form a +
Jb are given to z. Similarly, if we know a solution
E(r,$,2) of a rotationally invariant system (e.g., a cir-
cular waveguide), a new solution of the form E(r,¢ —
¢0,2), where ¢o may be complex valued is easily ob-
tained. Alternatively, we may restore arbitrary time
dependence and factor out instead an exp(—jk,x) de-
pendence on x, that is, keep a constant spatial frequency
in place of a time angular frequency.
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Let us now go back to time-harmonic fields and to the
simplest solution of the scalar wave equation, the one
corresponding to a radiating point source. In acoustics,
this point source may be a pulsating sphere whose di-
ameter is very small compared to wavelength. Then the
classical solution is E(x,y,z) = exp(—jkr)/r, where r =
(x2+ y2+22)1/2. Because the medium is supposed to
be homogeneous, clearly E(x,y,z — z,) is also a solution.
If we set 29 = —j{, ¢ > 0 and apply the paraxial wave
approximation x? + y2 <« 22, we readily find that
E(x,y,z — 2¢) describes the field of a Gaussian beam,
that is, a field whose amplitude decays as a function of
the distance from the 2 axis according to an exp(—x2)
type law. This observation was first published by Ar-
naud as a footnote in Ref. 13 in 1969. A similar remark
was made by Deschamps in 1971 for a radiating dipole.!4
In electromagnetism, the dipole is indeed the most el-
ementary radiating system. But in many problems of
weak guidance, the scalar approximation is appropriate.
The generation of Gaussian beams with general astig-
matism was obtained by Arnaud and Kogelnik!® who
introduced the complex rotation alluded to before. The
generation of Gaussian beams by complex displace-
ments is often used to treat weakly diverging antenna
problems (see, for example, Ref. 16). Most authors in
this field refer to the better known paper by Des-
champs.!* Note that the use of complex rays beyond
the paraxial approximation is not exempt from dif-
ficulties, as discussed in Ref. 186.

Finally, let us note that free-space electromagnetic
fields with arbitrary time and space dependences can
be generalized along the same concepts if one considers
the complex field G = E — jB, where E and B are the
real electric and magnetic fields. New solutions are
obtained if we introduce complex space-time shifts,

rotations, boosts, ete. (see Ref. 17 for an interesting but .

mathematically involved paper).

The complex ray representation of Gaussian beams
presented in this paper rests on somewhat different
principles than the one just discussed. Indeed, the
medium is not supposed to possess any obvious sym-
metry such as translational or rotational invariance.
However, the medium is supposed to exhibit at most
quadratic variations of the refractive index as a function
of the transverse coordinates (more precisely, one must
assume that the z component of the local wave vector
k is at most a quadratic function of x, y and k, ,k,. For
isotropic media, the latter condition implies the paraxial
approximation). Now, in such a condition, it is easy to
see that the field of a ray pencil can be expressed in
terms of a paraxial ray of equation x = X (z), even if the
explicit solution of the ray equation is not known. More
precisely, the field of the ray pencil is easily expressed
(see the main text of this paper) in terms of (d X /dz)/X.
But X(z) is the solution of a second-order differential
equation; it therefore depends on two arbitrary con-
stants. One of these constants disappears when the
ratio d X/dz and X is taken, but we are still left with one
arbitrary constant. For ordinary rays, X(z) and
therefore the arbitrary constant must be real quantities.
At the ray pencil center, X = 0 and the associated field

s b o



is therefore infinite. Gaussian beams are obtained,
however, if complex values are given to the arbitrary
constant. Then the field is finite everywhere. This
approach was first published by Arnaud!? in 1969 and
generalized to many optical systems!®19 and Gaussian
pulses.20

The main point of this paper is that Gaussian beams
can be traced simply by tracing two real paraxial rays,
the real and imaginary parts of the complex ray X (z).
This beam tracing procedure has been reconsidered
recently in this Journal in an interesting paper by
Herloski et al.?!

As we indicated earlier, this Appendix is not intended
to be a review of the subject. The early work by
Kravtsov,22 however, must be mentioned.
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