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Ray theory of the impulse response
of randomly bent multimode fibres
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A ray theory based on the time-independent Fokker-Planck equation and the integration of time along
ray trajectories provides analytical expressions for the average arrival time and spread of optical pulses
propagating in randomly distorted, multimode, optical fibres. A clear physical picture emerges from the
theory. The analytical expressions obtained for () and (t?) coincide with the ones obtained by Olshansky
from coupled-mode theory. The %) and (¢*) moments of the impulse response are also calculated.
Simple closed-form formulae are given for the step-index slab. The coupling between all modes is
effectively taken into account in our ray theory.

1. Introduction

It is well known that random perturbations of the geometry of multimode optical waveguides reduce
their temporal dispersion [1-4]. In the absence of perturbation, the width o(L) of the impulse response
is proportional to the length L of the fibre, However geometrical imperfections induce fluctuations of
the ray trajectories (or, equivalently, induce coupling between the guided modes). As a result, the width
of the impulse response increases only in proportion to the square root of L, for large values of L. One
of the most complete theories of that effect to date is probably that of Olshansky [5]. Olshansky's
theory is based on a perturbation solution of the time-dependent Fokker-Planck equation, the latter
being obtained from Marcuse’s coupled mode theory [3-4].

In the present paper we show that the same results can be obtained by using the time-independent
Fokker-Planck equation, derived from ray-optics in [6] and [7], and integrating the time along ray
trajectories. Thus, a fully ray-optics theory is obtained. Our approach provides a clearer physical
picture of the processes involved than modal and perturbation techniques. In Sections 2-6 we derive a
number of general results based on probability theory and, in Section 7, we illustrate these results by
applying them to the step-index slab. Readers, if they wish, may read Section 7 first where simple
closed-form results are given.

2. The time-dependent Fokker—Planck equation
A time-dependent Fokker—Planck equation of the form
dR(m, z, 1)[dz + T(MBR(m, z, O)/dt = £ (m, d/dm)R(m, z, 1) (1)

has been derived by Marcuse [3, 4] from coupled-mode theory, under the assumption that the guide
deformations are stationary. In Equation 1 R denotes the power in mode m at the axial coordinate z and
time 7. 7(m) denotes the reciprocal of the group velocity of mode m. £is a linear operator, independent
of z, proportional to the strength of the deformation. The Fokker—Planck equation in Equation 1 can be
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obtained as well from a ray theory [6, 7]. In a ray theory, the mode number m is replaced by a vector s
that specifies a point in phase-space (in short s is called a phase vector). In the special case of step-index
slabs for example, m should be replaced by the angle that the ray makes with the guide axis. Note that,
within the axiomatics of space-time ray optics, optical powers, rather than optical fields, add linearly.

Olshansky [5] was able to obtain analytical expressions for the average time of arrival of a pulse
using a first-order perturbation of Equation 1, and for the width of the output pulse using a second
order perturbation of Equation 1. The approach described in the remainder of this paper differs vastly
from that of Olshansky in concept and in the details of the calculation. Yet, it provides the same
answers. Our alternative formulation is sketched in the next section.

3. An alternative formulation for impulse response analysis

Consider first a time-independent source and define the probability density P(s, z) where the phase-
vector issat z, The vector 8 = (x, dx/dz, v, dy/dz) denotes the position and slope of the ray, at some z.
That is P(s, z) dx d(dx/dz) . . . denotes the probability that the ray has a position between x and ¥ + dx,
slope between dx/dz and dx/dz + d(dx/dz) . . ., at fixed z. The probability is defined over an ensemble
of fibres. (The word ‘density” is sometimes omitted). Under the usual assumptions, this probability
obeys the time-independent Fokker-Planck equation

0P(s, z)/0z = £ (s, 0/3s)P(s, 2) )

where the linear operator £ is the same as in Equation 1. Without loss of generality, we assume that £ is
self-adjoint. Then, the forward and backward Fokker-Planck equations coincide.
The transit time of a pulse along a ray s = s(z) is

1@ = 1l & @

where 7 is the time of propagation of a pulse along the ray over a ray period, divided by the ray period.
This time can be evaluated by integrating d//u along the ray, where df denotes the elementary ray length
and u the local group velocity. The set of Equations 2 and 3 is fully equivalent to Equation 1. This,
incidentally, proves that, within space-time geometrical optics, the time dependent Fokker-Planck
equation does not contain diffusion terms of the form 3°P/31s or 3*P/r?, except perhaps in singular
cases (See [6]).

In subsequent sections we will evaluate the average time of arrival of a pulse

L
@@Ly =J ¢ [s)]) dz (4)

1]
and the average square of the time of arrival

|z sz rlste)D ®)

which the r.m.s. impulse response width squared o? = (r2) — {t)* follows.

In Equations 4 and S, L denotes the length of the fibre and { ) denotes an ensemble ave rage. The latter
concept will be made more precise later.

riwdls
Ly = QJO dzlj

4. Modal solutions
In step-index slabs, rays are transmitted, in principle without loss, if 8] <+/ (24) where A denotes the
relative change of index. The ray is absorbed if 6] >+/(2A). [8] denotes the absolute value of the ray
angle to the curved fibre axis (Fig. 1).

More generally, we assume that a ray is transmitted if the phase vector s is within some specified
boundary €, and eliminated otherwise. Let T,, denote the event that the ray has been transmitted up to
z, that is, s has remained within € all the way from 0 to z. Further, let P(s,2; T,,) ds denote the prob-
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Figure 1 Variation of @ (z). the ray angle, at intersection with the curved fibre axis as a function of z. The ray sample
shown in the figure Is not transmitted because 8 exceeds +/(24) somewhere between z =Qand z = L,

ability that a ray is between s and s + ds at z and has been transmitted up to z. P(s, z; Tp.) is a so_luticlrl
of Equation 2 with the boundary condition: P = 0 for s on €. To obtain P(s, z; T, ), it is convenient to
first define steady-state probability distributions P;(s) and losses A; from the eigenvalue equation

—NPy(s) = £(s, 0/08)Py(s); / = 1,2...

(6)
Pis) = 0 one.
In order to interpret Py(s) as a probability distribution, it must be normalized by
J Pis)ds = 1 Q)

the integral in Equation 7 being taken within the specified boundary €. Note that our normalization in
Equation 7 differs from that used in [5]. The well-known orthogonality property of the F; is denoted

J Pi(s)P,(s) ds = 8paj’ (3)

where 8, is the usual Kronecker symbol, and the g; are numbers that can be evaluated once the P; have
been obtained from Equations 6 and 7.

Any ray probability distribution P(s, 0) at z = 0 can be written as a series P;(s)
P(s,0) = ), I,P(s). (9a)
i

Using the orthogonality (Equation 8) of the P; ana postulating completeness for the class of functions
P(s, 0) that satisfy the same boundary condition as the P;, the coefficients /; are given by

Iy = g j P(s, 0)Py(s) ds; (9b)

Y aP(s)P(s) = 8(s—+") (9¢)
i

and, since P(g, 0) is normalized to unity, we have

Y L=1 (9d)
J
Y aPys) = 1 (9e)
i
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The latter expression being obtained by setting P(s, 0) = §(s — ) in Equation 9b using Equation 9d, and
subsequently setting s’ = s.

The probability that the phase vector is s at z and the ray is transmitted up to z is, using Equations 2,
6 and 9

P(s,z; Top) = ), 1iPi(s) e
=3 a,e"‘a"Pj(s)fP(s”. 0)P;(s") ds” (10)
I

In particular, if P(s", 0) = 8(s" —s), that is, if we specify the phase vector at z= 0, the probability that
the phase vector is s at z and the ray is transmitted is

P(s,7: To I8, 0) = X aPy(s)Py(s’) e ™. (1
s

If we integrate this expression over s we obtain the probability f that a ray is transmitted up to z, given
that the phase vector equals s’ at z = 0

[(To,l8,0) = ) aP(s)) e ™" (12)
I

Finally, the probability that a ray is transmitted from O to L is, from Equation 10
f(Tor) = | PG LiTop)ds = T fje7™", (13)
)

5. Average arrival time

To evaluate the average arrival time under the assumption that all the rays are excited at the input of the
fibre at time ¢ = 0 by a §-function, we need the probability distribution P(s, z|To;) of s at z conditional
on the fact that the ray will reach the end of the fibre (of length L). This conditional probability is

P(s, z|ToL) = P 2; Top)f(Top). (14)

P(s, z; Tog) in Equation 14 is equal to the three-dimensional probability P(s, z; Ty,; T, 1), or, because
8(z) is a Markov process
P(s z;Tor) = PAs, 2, To. )f (T ls, 2). (15)

Thus, using the expressions in Equations 10, 12 and 13, the conditional probability in Equation 14 is

finally obtained as _
P(S,. Z|TOL_] P(S- z; Toz )f(T,,LJSJ z]ff(TOL)

Il

Y LiB(8) €N L, dPyn(s) € P2
J m

= ; (16)
Y I, e Mk
The average arrival time given in Equation 4 is, more explicitly
L
L) = I dz_[ ds 7(8)P(s, zIToy). 17)
0
Using in Equation 17 the expression given in Equation 16, a straightforward integration over z gives
Z 4m e“hmbl[mpmmL + Z ijmJEmj(L)J
m J
(L) = (182)

o
where we have defined
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Il

f T(S)Pp(8)P;(s)ds

Hmj

Epj(L) = (e"mi® — 1)/Ay
Aap = A Ap- (18b)

This result coincides with that given by Olshansky in [S] if we take into account the differences in
normalization of the P;.
For small values of L, the expression in Equation 18 can be shown to reduce to

ey = L j (s)P(s, 0)ds; AL < 1. (19)

This result is physically obvious because the ray distribution P(s, 0) at the input of the fibre remains
essentially undisturbed over a short length of fibre.

The case of large lengths L is more interesting. Because the A; increase rapidly with j, the main contri-
bution to {(L)) comes from the first stationary distribution j = 1, provided /, is not small in comparison
to the other coefficients, We thus obtain the result for 7, # ¢

GULY ~ aguyul = LJ‘T(s)Pf(s) ds/JP%(s) ds; AL > 1 (20)

which is independent of the excitation conditions.
In both cases (small L and large L), the average time of arrival is proportional to length, but the
coefficients (average velocities) are quite different in these two limits.

6. Average impulse response width

The second moment {t*(L)) defined in Equation 5 can be evaluated exactly by similar methods. The
result again coincides with that of Olshansky [5].

The details are given in the Appendix. The asymptotic expression for the variance o? = (¢?) — {)? is
a® ~ 2L i BimBi@mAmas AL > 1, (21a)
m=32

All the higher order moments can also be evaluated exactly because we know the temporal distribution

of the Markov random function s(z)|T,,, in Equation 3 (we have to consider only the transmitted rays).
After simple calculations, we obtain

= ({[t@) — G@P)NVLYY + 0, L > oo (21b)
0@ = ({[(L) — C@UPMINVLYY > 30°, L » . (21¢)

We know that for a Gaussian random variable, we have ¢ = 30*, The results in Equation 21 suggest

that the response tends to be Gaussian for large lengths. This conclusion was reached by Personick [1]
for two modes, and by Marcuse [3] from second-order perturbation theory,

a
and moreover

7. Application to the step-index slab
The very general results given in the previous sections are now applied to the step-index slab. Closed-
form results are exceedingly simple to obtain when the correlation of the fibre axis curvature is micro-
scopic (white spectrum). Since the main purpose of this section is to illustrate the previous results we
shall make that assumption

Consider first an homogeneous medium, and let C(z) denote the local curvature of the curved z
axis. With respect to that curved axis, the ray equation is
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: Ci"H)ds (22)

~0

6(z) = 0(0)+

where §(z) = dx(z)/dz denotes the angle of the ray to the z axis. Let us assume that C(z) is a stationary
process of zero mean and microscopic correlation. We obtain with the usual transformation

= z
((Bx)—8;5]1> = <J j C(zHC(E") d=’ dz”> = Az (23)
0 -0
where 8, = 6(0) and =l Wi
L)Yz = ¥8(z —z). (24)
In Equation 24 §(z) denotes Dirac’s §-function, and 7 is the power spectral density of the process ((z)
(defined over the — o=, + = domain of angular spatial frequencies).
If C(z) is a Gaussian process, it follows from the linearity of Equation 22 that 8(z) is also a Gaussian
process. However 6(z) tends to be Gaussian for large z even if C(2) is non-Gaussian, as a consequence of
the central-limit theorem. Thus, the probability distribution of 8 is always, for large z, given by

P@,z180) = (2myz) "2 exp [— $(0 — 8,)*/yz) (25)
which is recognized as the Green function of the heat-diffusion-type equation
dP[3z = (v/2)3*P[2362. (26)

Note that our derivation provides the Fokker—Planck equation Equation 26 without the need of invok-
ing the standard Fokker—Planck theory.

We now wish to account for the effect of the slab boundaries by specifying that P = 0 when
|81 =+/(24), where A= An/n is the relative change of refractive index, for all z. (Note that we have
been able to ignore the sign reversal of dx/dz at the slab boundaries because of our assumption that the
curvature has microscopic correlation, that is, has a white spectrum).
The normalized stationary solutions of Equation 26 with the boundary condition P(x \/(24), z) = 0 is

P8, 2) = Pi(8) e (27a)
where
Pi(0) = [ — D)r/a/20)] cos [(2— 1)201/@A)] (— 1)+ (27b)
N = [ = Dn/4])*y/a

gt = (J—1)72n/[165/24)]; j = 1,2...
The lowest steady-state loss is therefore™

Ay

(mfd)?y/A = 0617y/A (28)
2.65v/A dB/unit length.

o

The steady-state radiation pattern is (apart from a possible effect of refraction at the fibre tip)

1) = cos Es / \/(za)] (29)

to within a constant factor,
For step-index fibres, material dispersion is a negligible effect. We may therefore take for 7(6) the

well-known expression
7(8) = (no/c)/cos 8 =~ (ngfe)(1 + 8%/2) (30)

where ¢/ng denotes the velocity of axial pulses. The average arrival time for large L is obtained by
substituting Equation 30 in Equation 20 and integrating over 8. Omitting the term 1oL /c, we obtain

*For comparison, for a square-law fibre, we have A, = 0.72y/A.
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' 3
&Ly = (%—é)noLA/c ~ 0.13nyLA/e. (31)

The square of the r.m.s. impulse response width is, substituting Equation 30 in Equation 21a
o* (L) = 2.24 x 1072 (n3 AL /yc?). (32)

Thus, if we define a transmission capacity improvement factor R = a/g, as the ratio of (L) in Equation
32 and the r.m.s. impulse width og in the absence of perturbation assuming that all modes are equally
excited at the input

Oo = 0217n,LAje (33)
we find, in agreement with Marcuse’s theory, that, for large fibre lengths, the product of R* and the total
loss aL given in Equation 28 is a constant

R*al = (Transmission capacity improvement)? (Total loss) = 0.132 dB. (34)
The Olshansky result for a round step-index fibre is
R*al. = 0.75 dB/(see curve p = 0, @ = 100 in Fig. 6 of [5]).

Note that the Olshansky result is approximate because only the coupling between adjacent modes is
taken into account and because, contrary to an assumption made, the modes of the step-index fibre are
not degenerate.

8. Conclusion

A general, full ray-optics theory of slightly distorted multimode fibres has been given. For a given
nominal index profile we first evaluate ray trajectories in the undistorted fibre and calculate the average
time of flight per unit axial length. We subsequently evaluate the diffusion of rays in phase space due to
the distortion of the fibre. This diffusion process obeys a time-independent Fokker—Planck equation.
The quantities of practical interest are the moments :(r), ¢2) . . . of the impulse response. They have
been given in terms of the modal solutions of the Fokker-Planck equation. Simple closed form formulae
have been obtained for step-index slabs.

Appendix

Derivation of the second moment (¢%(L))

The derivation is formally almost the same as for the first moment (z(L)) in Section 5. We need the
property that the random function s(z) is a Markov process.

We start from Equation 5 where the mean values are still understood to be conditional on the event
Tor, that the ray will reach the end L of the fibre i.c. we need the conditional two-dimensional
probability distribution

P(sy,21582,22|Tor) = Plsy, 21382, 225 Tor) f(Tor) (A.1)
where f(T,y ) is still given by Equation 13 and P(sy, 2y ; 83, 233 Tor ) is also equal to the four-dimensional
probability distribution

P(sy, 21383, 233 ToL) = P(81,21:8, zz;Toz,}Tz,L) = P(T;plsy, 21582 zz;Toz,)P(slazl;szrz:}TOz,)-

(A.2)
Because the function s(z) is of Markov type, the conditional probability distribution in Equation A.2 is
P(T; 181, 21383, 233 Toy, ) = f(Ts l8s,23) (A3)

‘where f'is given in Equation 12. The three-dimensional probability distribution in Equation A.2 may
now be expressed in terms of a conditional probability defined in Equation 11.
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P(sy, 21382, 22 Top,) = P51, 245 T, 2,182, 22)P(s2, 22 Toy,) (A.4)
From Equations 11, 12, A.2—A.4 we can write

wls@I17[8E)D = PTop)]™ Y 00mlxtlimbim & e®i-Am¥=1 e®m-Nedz: - (A5)
Jjmk

For the integration of Equation A.S over zy and z,, we have different terms

. Az _ -J\jz W e
LY = PTDT T sttt [ Bt g t“‘—e)
Jmk MMk Jisnm =k AmAmk  Jismm#n

5 (z e?m?  ghm? —g N il (e'lk* —eMm? 2 e"‘mz)
Aﬁm R,;gm m=k, j#F m; hJ'z'ﬂk Amk j=m, k *j
i e R 7 2 3
ze ™ e e Z°
+ ( + - ) +(-—e "m‘) .
Amj Mmi Jekmei 2 j=m =k
Ap EN—N (A.6)

When L > 1/\; and I, #0, we obtain

+2Lai Y LI prstms M- (A7)
m

Ly ~L%a3, + 2La, [E C i At + @pafti iy Nt

The variance of the delay time distribution is now deduced from Equations A7 and 18a since

Am My aypam 1,
(L) ~ Lajp; + SMmIIM g TR A8
s L bt e g

and we finally obtain Equation 21.
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