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Ray theory of randomly bent multimode optical fiber:
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The complete solution for propagation in randomly hent, circularly symmetric multimode optical fibers is given;
the paraxial-ray-optics approximation is used. This ray-optics solution is, in principle, equivalent to the power-
coupled-mode equations in the continuum limit. However, none of the assumptions usually made in modal theo-
ries is needed in the ray theory. In particular, the coupling between nonadjacent modes is effectively taken into

account.

Introduction

Random bending is the most commonly found defect
in multimode optical fibers. These bends have the
unfavorable effect of reducing the optical power avail-
able at the detector, but they also have the favorable
effect of reducing pulse spreading. A fairly complete
theory of that effect based on Marcuse’s power-cou-
pled-mode theory has been given by Olshansky.! The
ray theory presented in this Letter is significantly
simpler than modal theories. Thus, analytical calcu-
lations can be performed with fewer approximations.
In particular, the coupling between nonadjacent modes
need not be neglected.

Our theory is based on the Fokker-Planck formalism
discussed, for example, by Stratonovich.? The coeffi-
cients entering into that Fokker-Planck (FP) equation
are expressed as integrals of ray parameters over a ray
period for any index profile. For power-law profiles,
closed-form expressions can be found. For the sake of
clarity, we assume that the fiber-axis curvature has
microscopic correlation. However, nonuniform spectra
can be handled just as easily, as in the two-dimensional
case treated in Refs. 3-5. Finally, it will be shown that
the FP equation can be written in a self-adjoint form
that makes comparisons with modal theories straight-
forward.

Ray Equations

Let n(x,y) denote the index profile of the fiber and
Cy(2),Cy(2) the curvature of the fiber axis in the x-z and
y-z planes, respectively. A ray trajectory is denoted as
x = x(z), ¥ = y(2), x and y being measured from the
fiber axis. If we further define

Ulx,y) = 1 = n(x,y)/n(0,0), (1)
the paraxial-ray equations are®
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Note, incidentally, that these equations also describe
the motion of a mass in a potential U(x,y) subjected to
a driving force C,,Cy, provided that 2 is changed to ¢
(time). It would be possible, in principle, to trace rays
on the basis of Egs. (1) and (2) along the full length of
the fiber for specified initial conditions and curvatures
and determine which one of the excited rays is trans-
mitted. This straightforward approach, however,
usually involves large numerical errors. It is thus
preferable to investigate how the parameters E,u that
characterize the ray motion evolve as a result of the
fiber-axis curvature.

For circularly symmetric profiles n(r) — U(r), the ray
parameters E,u are defined as

E= U(r)+%{a&2+y2}; r2=x*+y%  (3a)

U =2xy —yx, (3b)
where the dots denote differentiation with respect to
2

In the mechanical analog, E,u are called, respectively,
energy and angular momentum. In the language of
wave optics, these quantities are, respectively to within
constant factors, the propagation constant of a mode
and the azimuthal mode number. The variation of E
and p as a function of z is obtained by straightforward
differentiations and use of Eq. (2):

dE/dz = 2C, +9C,, (4a)
du/dz = xCy — yCs. (4b)

In deriving Eq. (4b), the fact that the fiber is circularly
symmetric has been used.
For a straight fiber, let us also define
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I(Ep) = £rdr 2= 2[E = U@)] — u?/r?, (5a)

which is analogous to the mechanical action. In the
language of wave optics, [ represents the radial mode
number. By differentiation of the expression of ] under
the integral sign, we find that the ray axial and azi-
muthal periods are, respectively,

Z(E,u) = oI (E,u)/0E, (5b)
—®(E,u) = 0I(E,u)/dn. (5c)

Note the relation
2Z(E - U) =1+ pd, (5d)

where the bar denotes an average over a ray period.
Finally, we define

R=r2=Z"1$(r2/r)dr. (6a)
We shall need the following identity satisfied by R:
d(RZ)/du + poZ/3E = 0. (6b)

The variation of I as a function of z follows from Eqgs.
(4) and (5):

dI _ ,dE _ 4k _ (7: + 83)C, + (Zy — #x)Cy.
dz dz dz

(6c)

In the next section, we take C,,C, random.

Statistical Theory

Instead of dealing with a single fiber, it is convenient to
consider an ensemble of fibers that differ from one an-
other only in curvature law. Thus we take C,(2) and
Cy(z) random. The sign ( ) will refer to averages over
the ensemble of fibers. In order to preserve circular
symmetry and stationarity in the statistical sense, we
assume that C.(z) and Cy(z) have zero means and
that

(Co(2)Cx(z")) = (Cy(2")Cy(2")) = T(2" = 2"),(7a)
(Cx(2)Cy(27)) = 0. (7b)

The case of arbitrary correlations T', or curva}ture
spectra, could be handled as for the two-dimensional
case.® However, for the sake of clarity, we shall consider
mainly microscopic correlations,

[(z' —2") = 48(z' — 2"), (Tc)

where v represents the spectral power density of the
processes and () is the Dirac 9 function.

Under those conditions, the probabll'lty_P*(E,p,z)
that a ray be transmitted at z when the initial ray pa-
rameters are E and u is found to obey the following
(backward-Fokker—Planck) equation:

~~19P1/dz = OPY/IE + (E — U)o%P1/0E?
+%R02P*/6p2 + ud?Pt/0Edu, (8)

with the boundary condition that P*(A,;{,z_) = 0, ap-
propriate to the limit of small bending. It is interesting
that the rate of increase of (E), given by the first term

of Eq. (8), is independent of the index profile (for mi-
croscopic correlations) and equal to .

We have obtained Eq. (8) in two ways. The first was
by deriving the Fokker-Planck equation for the _prob-
ability expressed in terms of the phase—space variables
X,3:%:55

8S/8z = (v/2)(32S/8%2 + 8%S/3y?), (9)

and going from the %,y variables to the E,u variables,
using Eq. (3), and holding x and y constant. Subse-
quently, averages over a ray period are performed. The
second method consists of calculating directly the
coefficients of the second-order terms in Eq. (8), using
Eq. (4). We obtain readily, using Eq. (7c),

~v-1(E2) =22+ y2=2(E — U), (10a)
y-U(Ep) =%y — % = & (10b)
vy U =x2+y2=R, (10¢)

where we have introduced the notation,
l(ab) = lim ([a(Az) — a(0)][b(Az) — b(0)])/Az.
Az=0
(10d)

Note that, even though we let Az go to zero, it is un-
derstood that Az remains much larger than a ray period.
Bending is assumed to be so small that the ray param-
eters E,u do not vary appreciably over a ray pgriod; t!lat
is, we assume that yZ is small compared with unity.
This condition (which, incidentally, is unrelate;d to the
adjacent-mode-coupling approximation made in m'odal
theories) by no means implies that the total micro-
bending loss is small. Indeed, typical fibers involve
millions of ray periods over their lengths. Thus, vZ «
1 is consistent with yL > 1.

The first-order term in Eq. (8) can be foun_d by re-
quiring that, when the probability is expressed in terms
of the mode-numberlike variables I,u, the equation
becomes self-adjoint. This condition follows dlre{;tly,
for example, from a modal theory in the continuum limit
if we assume that power coupling between modes is re-
ciprocal. Specifically, setting

QLpz) = PHE(Ip),mz2], (11)

one can show after lengthy algebraic mapipu]ationg,
using Egs. (5d) and (6b), that the equation for Q is
self-adjoint only if the coefficient of aP1/du in Eq. (8)
is equal to zero and the coefficient of dP'/OE is unity.
The equation for Q(/,u.2) is conveniently written in the
form of a conservation equation,

(2/7)8Q/dz + /3 + 8J /o = 0,

where the I, x components of the probability current J
are, respectively,

J; = —(®K + Z1)aQ/al + KoQ/du, (12b)
J,=KaQ/al — RAQ/dp, (12¢)
K=%®R - Zy, (12d)

and E,Z,® R, defined earlier, are considered functions
of I and p. The terms in Eq. (12) can also be obtameﬂd
directly from the expressions of [(I?), 1(Iu), and I(x?)

(12a)

derived from Eq. (6¢). It is not difficult to show that,
for any function, Q,:JJ; = 0 along the I = 0 line (corre-
sponding to helical rays, K = 0), and that J, = 0 along
the u = 0 line (corresponding to meridional rays, ® = «).
These conditions hold also for arbitrary-curvature
spectra. Thus, in order to solve Eq. (12), we have only
to consider the boundary condition: Q[(7(A,u),u] = 0.
The factors in Eq. (12) are the power-coupling coeffi-
cients that modal theories should provide in the WKB
approximation. This can be shown explicitly for me-
ridional rays and arbitrary curvature spectra because
the Fourier coefficients of x(2) are simply related to the
transition probabilities between modes.

The probability P(E,u,2) dE du that a ray has energy
between E and E + dE and angular momentum be-
tween p and p + dp at z obeys an equation (the so-called
forward-Fokker-Planck equation) that is the adjoint
of Eq. (8). One can easily show that P = ZP1, using
again Eqs. (5d) and (6b).

. Power-Law Profiles

S

For power-law profiles,”
Ulr) = A(r/re)*, (13)

where A denotes the relative index change, r. the core
radius, and 0 < k < = a parameter, the virial theorem
shows that

E—-U=[x/(1+x]E. (14)
If we consider solutions of Eq. (8) of the form
PY(E,u,z) = Pp'(E) exp(—Ap2); Pnf(A) =0, (15)

where \,, represents the microbending loss of the sta-
tistical mode of order m, closed-form solutions are
found in terms of Bessel functions of the order v = 1/x.
We shall give here only the expression of the micro-
bending loss of the fundamental statistical mode,

A =u,2y/8A); J,(u,) =0. (16)
For square-law profiles, x = 1, for example, the loss is
' Loss = 7.969 /A dB/unit length, (17)

as found earlier by different methods.® Note that al-
though P1, as considered above, is independent of u, the
power @ in mode I,u does depend on p, according to Eq.
(11), because E depends on p. Let us also ohserve that,
contrary to what is implied in Refs. 1 and 7, the modes
of propagation in fibers with power-law profiles are not
degenerate, except for « = 1; that is, F is not a simple
combination of the two mode numbers. [See, for ex-
ample, Keller and Rubinow’s asymptotic expression for
step-index fibers, quoted in Eq. (5.104) of Ref. 6.]
Thus, it is not permissible to use a single compound
mode number, except perhaps as an approximation for
near-square-law profiles.

For nonuniform curvature spectra, the factors in Eq.
(8) need to be expressed as infinite sums. The factor
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¥R of 82Pt/du2, for example, should be replaced by a
term of the form

5. fufa*gl@nm — ®)/2), (18)

where the f, denote the Fourier coefficients of the
complex periodic function,

[x(2) + iy(2)] exp(—iz®/Z), (19)

and x(2), y(z) denote, as before, a ray trajectory in the
circularly symmetric fiber. The function g(a) denotes
the spectral power density of the curvature process at
the spatial frequency a. For the case of microscopic
correlations considered earlier, ¢ is the constant v. The
adjacent-mode-coupling approximation amounts to
keeping only the first term in the series in Eq. (18). For
uniform spectra and step-index fibers, this involves an
error of the order of 20%. The error may be much larger
if the spectral density increases in the relevant range of
spatial frequencies, as is the case, in particular, for
near-sinusoidal deformations. For helical rays, only the
first term in the series, Eq. (18), is different from zero,
since helical rays project a sinusoids on both the x—z and
y—z planes.

Finally, let us observe that, contrary to what has been
done in Ref. 1, we did not find it necessary to interpolate
between the step-index and the square-law values to
obtain the diffusion coefficients. Admittedly, not all
of our results are in closed form, but perhaps one cannot
go much further analytically without approximations.
The statistical modes discussed in this Letter are es-
sential to obtaining the impulse response of a fiber,
whether one uses Olshansky’s perturbation technique!
or integrates time along the ray trajectories.”
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