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A ray theory is given for randomly bent (two-dimensional) optical fibers that have arbitrary index profiles and arbitrary

curvature spectra. Simple closed form results are given for powerlaw profiles and spectra. No approximation is made be-
sides the small bending approximation and the paraxial ray optics approximation. In particular, the coupling between all

modes is effectively taken into account,

1. Introduction

The random distortion of the axis of optical fibers
has profound effects on their transmission character-
istics. We investigate these effects with the help of a
ray theory, which is sufficiently accurate when the
fiber carries a large number of modes, typically more
than 10, For the sake of clarity, we restrict ourselves
to two-dimensional fibers.

2. General theory

It is well known [1,2] that the transmission of
rays in randomly curved fibers is analogous to the mo-

tion of mechanical oscillators driven by random forces.

Thus, if z denotes the length along the curved fiber
axis, and n(x) the index profile, paraxial ray trajec-
tories x = x(z) obey the equation

X¥=F(x)+C(2), (1)

where upper dots denote differentiation with respect
to z, and we have defined

F(x)= —dU(x)/dx, U(x)=1-n(x)n(0). (2a,b)

The fiber axis curvature ((z) is random.

The purpose of this paper is to evaluate the prob-
ability P(x, x) dx dx that a ray has slope comprised
between ¥ and x + dx, and position comprised be-
tween x and x + dx, at some z, for specified initial
conditions. The steady state microbending losses are
directly related to the equation for P.

3. Straight fibers

A few results applicable to straight fibers are re-
called here. The amplitude of a ray trajectory x = x(z)
can be characterized by the parameter

E=U)+x2/2, 3)

which is analogous to the mechanical energy. It can
also be characterized by the area enclosed in phase
space by the ray trajectory,

1=/ [ ai ax )

which is analogous to the mechanical action. In the
language of wave optics, / is essentially the mode num-
ber and £ the propagation constant. Alternative useful
expressions for [/ are
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1=f\/2IE- UG)] dx=2x2, (5)

where Z denotes the ray period and overbars denote
averages over a ray period. They follow from earlier
definitions.

If we differentiate eq. (5) under the sum sign and
use eq. (3), we obtain

Z=dI[dE, (6)

where I is considered a function of E.
Power-law profiles [3] are of particular interest.
We set

n(x) =ng[l — Alx/x)*] (7a)
Ux)= A(x;"xcjz" . (7b)
For that case we have [4]

I(E, k) = x N2A(E/A)**DIZK g(k) (8)
where

g(k) =2+/7(1 +1/2¢)/T(3/2 + 1/2x) 9)

and I'(-) denotes the gamma function. We have, in
particular, g(1) =, g(e°) = 4. The expression for the
ray period follows, as we have seen, by differentiation

Z(E, k) = (x/N2B8) [(x + 1)/2k] (E/B)*g(x),  (11)
v=(1-r)2k.

In particular

I(E, 1) = mx /2A(E/D)

} square-law (12)
Z(E, 1) = 2mx \24

I(E, ) = 4x . /2A(E[A)1 2
] step index (13)
Z(E, =) = (4x.A/28)(£/4)~17

4. The Fokker-Planck equation

Let us go back now to the general equation (1),
and assume that the fiber axis curvature C(z) has zero
means and microscopic correlation

(C(2) CEN=~8(z-2"). (14)
In eq. (14), 8 (-) denotes Dirac’s 5-function and v the
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power spectral density of the process. Under those
conditions, it is well known (see ref. [5], eq. (4-254),
in the limit of negligible damping) that the probabil-
ity P(E, z) dE that a ray has energy between £ and

E + dE at z obeys the equation

dP[dz = —3(AP)/OE +(1/2)3* [B(E) P][0E2, (15a)

where
A=ql2, B(E)=+I/QI/dE)=yI/Z = yx*. (15b,c)
I is the ray action defined earlier in eq. (5).

For comparison with modal theory, it is useful to
write eq. (15) in the self-adjoint form

aQ/az = a[D(DaQjarll /I, (16)

where we have used [ instead of E to characterize the
ray amplitude, and where we have introduced a nor-
malized probability density Q(/, z), related to P by

Q(I, 2)dl = P(E, 2)dE . (17)

The diffusion coefficient D(J) is equal to BZ?/2.
In the special case of power-law profiles, eq. (152)
becomes, using eq. (8)

8P_ 3 (1p| L2 (2
az"af(zp)*za,gz(ml?”)' (1)
It can be shown that the ratio P(A, z)/P(0, z) tends
to zero as ¥2/5 as y = 0. Thus, in the limit of small
bending, we have the boundary condition P(4, z) = 0.
The closed-form stationary solutions of eq. (18),
called statistical modes, are obtained by setting
P(E, z) = P, (E) exp(—\,, z). We have the unnormal-
ized densities

P,, (E) = (E/AYR T, (u,,, VEIB), (19)
where

r=(1 —k)/2 (20a)
and

A = [k/(1 + )]l (7/4) (20b)

J, () denotes the Bessel function of order v and u,,,
the mth zero of J,, m = 0, 1, .... The lowest steady-
state microbending loss is obtained for m = 0. The loss
expressed in dB/unit length is

a, =434%,,. 21
The left-hand-side of eq. (21) is plotted as a function
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of k in fig. 1. We note that for white curvature spectra
the microbending loss is not very sensitive to the pro-
file, at least from k = 1 tok = =, as noted earlier [2].
The probability density in eq. (19) is everywhere
positive for m = 0, but, for m >0, it may be negative
for some values of E. Such statistical modes do have

an independent physical meaning, because one may al-

ways add to them a constant large enough to make
them everywhere positive. Physically, this constant
represents radiation or cladding power.

The irradiance is more readily measured than the
probability density. It is obtained by integrating P
over x while x, and therefore U, is maintained a con-
stant. We obtain

1
SG0= [ 720, uymy) dy, @)
where s
X=x/x..
This integral, unfortunately, can be evaluated only nu-
merically.
5 a0
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Fig. 1. Curve m = 0: variation of the normalized steady state
microbending loss: (A/y) X loss in dB/unit length as a func-
tion of the profile parameter « (note: k = 1, square-law pro-
file). Curve m = 1/m = 0: loss ratio of the first two statistical
modes. The horizontal scale is linear in x/(x + 1).
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5. Non-uniform curvature spectra

The spectral density of the fiber axis curvature is
usually not a constant, as we assumed earlier. However,
the general form in eq. (16) is the same for non-white
spectra [6]. Thus, we only have to calculate, accord-
ing to the standard Fokker-Planck theory

B(E)= Iimﬁ ([E(Az) — E(0)]®)/Az, (23a)
Az—
where
AZ
E(A2) — E(0) = f ¥C(z2)dz. (23b)
0
Thus

([E(Az) — E(0)]%

Az az—¥%
=2 [ rO& [ i@ie+HL,  (24)
0 0

where
P@E)=(Cz) C +¢), T(Az)=~0, (24b)
Az=L
[ i@ie+o
0
~j Az ?33 %2 cos(2mni[Z) (25)
if we set

x(z)= § x,, cos(2mnz/Z)

Zl4
x, =(8/2) f %(z) cos(2mz/Z) dz (26)
0
and assume that x(0) = 0. Thus
8-1 T 60z, @7
1,3
where
G)= [ 1) cos(2nkt) & (28)
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denotes the power spectral density of the C(z) process.

If we are dealing with power-law profiles, and we as-
sume that G is proportional to k¢, B in eq. (27) is
found to be proportional to £1-9”, provided the sum
converges. For step-index fibers

x2=(4/m22EMm?, n=13.. (30)

Neglect of the coupling between non-adjacent modes
introduces for that case an error of the order of 20%.
Note further that in the theory in ref. [7], the mode
coupling coefficients for arbitrary k are merely inter-
polated between the square-law and step-index values.
None of these approximations has to be made here.
The results that we have presented are consistent with
previously published results for special cases [8—10].
They are applicable to arbitrary smooth profiles and
arbitrary regular curvature spectra. For profiles other
power-law profiles, simple numerical integrations are
needed. The direct tracing of rays through randomly
bent fibers is very costly in term of computer time.
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Note that the numerical factors in egs. (32) and (33) of
this paper should read 0.00431 and 0.298 respectively;
eq. (34) should read: total loss/(transm. cap. impr.)? =
0.128 dB.



