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Single-mode cavity laser light statistics is considered within the framework of rate-equations. According to that
approach, fluctuations are caused by jumps in active and detecting atoms. The algebra 1s simple allowing ana-
lytical expressions for intra-cavity Fano factor and photo-current spectral density to be obtained. Poissonian,
quiet, and optical pumps are considered. The results are verified by comparison with Monte-Carlo simulations.
An essentially exhaustive investigation of sub-Poissonian light generation by classical laser schemes, two-

mode lasers and semiconductor lasers is proposed.
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INTRODUCTION

Light is called sub-Poissonian when the variance of
the number of photo-detection events counted over a
large time duration is less than the average number of
events. Equivalently, we may say that the photo-current
spectral density is below the shot-noise level at low
Fourier (or baseband) frequencies. It has been shown
experimentally by Machida et al. [1] that laser diodes
driven by high-resistance electrical sources may gener-
ate sub-Poissonian light. This feature of great funda-
mental and practical importance treated theoretically
by Golubev and Sokolov [2], Yamamoto et al. [3] on
the basis of the laws of Quantum Optics may be under-
stood alternatively as resulting from a birth-death
Markov process efficiently modelled using Langevin
forces and rate-equations (see Arnaud [4, 5] for an in-
troduction to the method).

The purpose of this paper is to apply the rate-equa-
tion approach to various laser schemes, namely optical-
ly pumped 3- and 4-level lasers, two-mode lasers and
electrically pumped semiconductor lasers. The light
statistics is calculated either analytically or using Mon-
te-Carlo techniques. The analytical expressions ob-
tained from rate-equations are found to coincide with
those derived from Quantum Optics methods, but the
algebra is considerably simpler. This is so even when
the emitted light exhibits sub-Poissonian statistics. To
wit, the expression for the internal cavity statistics of
many 4-level atoms with a negligible spontaneous de-

cay previously given by Ritsch er al. [6] is recovered
[7]. Similarly, 3-levels atoms expressions obtained by
Khazanov et al. [8] are recovered (see below). Coher-
ently-pumped 3-level atoms lasers [7] and two-mode
lasers were apparently not treated earlier.

Rate-equations treat the number of photons in the
cavity as a classical random function of time. The light
field is quantized as a result of matter quantization and
conservation of energy, but not directly. Rate equations
should be distinguished from semi-classical theories in
which the optical field is driven by atomic dipole ex-
pectation values. The theory employed in this paper
rests instead on the consideration of transition probabil-
ities, as in the Loudon [9] treatment of optical amplifier
noise, for example. Every absorption event reacts on
the number of light quanta in the optical cavity. Semi-
classical theories are unable to explain sub-Poissonian
light statistics because the light generation process and
the light detection process are considered separately.
We treat here the laser as a birth-death Markov process
[10]. A Monte-Carlo simulation gives the evolution of
the number m of photons in the cavity from which the
Fano factor & = var(m)/{m) is obtained [7]. On the oth-
er hand, the instants #, when photons are being absorbed
provide the spectral density of the photo-current whose
normalized value ¥ is unity for Poisson processes [11].
The normalized spectrum is denoted $(€2). The Fourier
angular frequency Q is called for short: “frequency”.
When both the number of atoms and the pumping level
increase, the computing time becomes prohibitively
large because of the exponentially growing number of
events to process. For simple laser schemes, analytical
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the range of parameters considered. More extensive
treatments considering other laser schemes will appear
elsewhere [7, 12]. Sec. I1I describes the complete treat-
ment of a two-mode laser derived from a classical 4-
level scheme. Well-known experimental results rela-
tive to partition noise will be shown to follow from the
coupled rate equations. Semiconductor lasers are treat-
ed in Sec. IV. The Monte-Carlo simulation exhibits the
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Fig. 1. V—type 3-level laser under incoherent (unidirection-
al) optical pumping.
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Fig. 2. Intra-cavity Fano factor for V-type lasers as a func-
tion of the pumping rate F. Error bars are the 95% confi-
dence level from a statistical treatment applied to ten Mon-
te-Carlo runs, each having duration 7, = 200. Plain lines are
analytical. The parameters are: N= 100, p, = 632, o= 6.32,
Y=0(1),6.32 (2), 632 (3).
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Fig. 3. Normalized photo-current spectral density § of V-
type lasers as a function of Fourier frequency 2. Points with
error bars are from Monte-Carlo simulations with 150 runs,
each of duration T, = 100. Plain lines are analytical. The
parameters are: N =100, p, =632, x=6.32; | -Y=0,P =
1265; 2 -v=6.32, P=20.

expressions are obtained by applying the weak-noise
approximation.

In Sec. I the rate-equation method is applied to V-
type 3-level lasers using both Monte-Carlo simulations
and the weak-noise approximation. The numerical
method and the analytical method are found to agree for

combined influences of carrier heating and spectral
hole burning on the dynamics of laser noise.

II. V-TYPE 3-LEVEL LASER

The active medium of V—type 3-level lasers is a col-
lection of N identical atoms as depicted in Fig, 29. Lev-
el separations are supposed to be large compared with
ku T, where T denotes the optical cavity temperature and
ky the Boltzmann constant, so that thermally-induced
transitions are negligible.

The probability per unit time that an electronic tran-
sition from level |1) to level |2) occurs is taken as equal
to m, and the probability of an electronic transition
from [2) to |1} as m + 1, where m denotes the number of
photons in the cavity. This amounts to selecting a time
unit whose typical value depends on the medium gain.
Spontaneous decay from level |2) to level |1) is allowed
with probability y. This decay may be either non-radia-
tive or involve radiation into other electromagnetic
modes, besides the one of interest.

Photons are absorbed with probability oum, where o
denotes a constant, the absorbing atoms residing most
of the time in their ground state. These absorbing atoms
maodel the transmission of light through mirrors with
subsequent absorption by a detector. Provided detec-
tion is linear and reflectionless, it is immaterial whether
absorption occurs inside or outside the optical cavity.
Like in the Sargent ef al. [13] classical textbook, it is
convenient to consider absorbing atoms located inside
the cavity. For simplicity, internal absorption is ne-
olected.

“Incoherent" pumping promotes electrons from lev-
el |1) to level |3) with probability P. The case of "coher-
ent" pumping that allows a fully symmetric electron ex-
change between levels |1) and |3) is discussed else-
where [7]. When the pumping field originates from
frequency-filtered thermal radiation, the pump fluctua-
tions are nearly Poissonian.

Spontaneous decay from level [3) to the upper
working level |2) occurs with probability p,,. All pre-
viously discussed relevant probabilities are schema-
tized in Fig. 1.

A. Monte-Carlo Model

The rate-equation model of a N—atoms single-mode
laser straightforwardly leads to a master equation for
the probability of having m photons stored in the cavity
at time 7 [5, 9, 14]. Alternatively, the laser evolution is
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modeled as a temporally homogeneous birth-death
Markov process. In the steady-sate regime, rate of
change and equilibrium probabilities of having m and
m + | photons within the cavity are linked via detailed
balancing condition. This is a favorable condition for a
Monte-Carlo simulation [15] because every laser mi-
crostate belongs to a Markov chain and thus occurs pro-
portionally to its equilibrium probability when the
number of step increases to infinity.

_For V-type 3-level lasers, rates of change W, are as-
cribed to the different kinds of events as given in Table.

For example, the probability that an atom jumps
from level |1) to level |3) during the elementary time in-
terval [f, t + 8] is W,8t, where 8¢ is chosen small
enough that this probability be much less than unity.
Because atoms are coupled to one another only through
the field, W, is proportional to the number 7, of atoms
in |1) at time ¢, and thus W, = Pn,, where the constant P
1s proportional to the pump strength. If a jump does oc-
cur, n; is reduced by 1 while the number n; of atoms in
level |3) is incremented by 1. If the initial value of n, is
N the event does not occur. Similar observations apply
to the other jump probabilities. Notice that the coherent
emission rate W is proportional to m + 1, following the
Einstein prescription. This ensures that laser emission
re-starts if extinction occurs. A key feature that distin-
guishes the present formulation from other rate-equa-
tion methods is that absorption of photons by the detec-
tor is included in the system description. Because de-
tection is supposed to be linear, such events are taken to
occur with a rate W, = oun, where o expresses detector
absorption.

An efficient algorithm has actually been employed

[10]. Given that an event of any kind occurred at time
T;, the next-event time is

L1
Tesy Tk+Ethl(r] (1)
P

where 1 is a random number uniformly distributed in
the interval [0, 1]. The probability that the event is of

kind 7 is equal to "’?’Z; W . The Monte-Carlo method

is readily implemented, only the total number of atoms
in each state needs to be tracked (for fermions the nu-
merical procedure is significantly more involved [11]).
Within the whole time set {1}, we select the subset {7}
of photon-absorption events. It is then straightforward
to evaluate the photo-detection noise spectrum.

The intra-cavity Fano factor & is represented in
Fig. 2. The analytical results of Sec.6 agree well with
the simulation. Notice that & is below unity within
some pumping range. This behavior is in good agree-
r]n?e}nt with previous Quantum-Optics results [6, 8, 16,

The normalized spectral density $(Q) isrepresented
in Fig. 3 for two sets of parameter values. For each
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Fig. 4. 3D plot of ¥ of a V—type laser as a function of Fou-
rier frequency € and (a) normalized pumping rate Pip,, (b)
normalized recombination rate y/p, . The laser parameters
are N =10, o = 6.32, p, = 632. The more sub-Poissonian
the light statistics, the lighter the surface.
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Fig. 5. Two-mode laser scheme.

Monte-Carlo run, $(Q) is first evaluated from the {z,)
list [11] and refined using a smoother power spectral
density estimator [18, 19]. Averaging over runs and
concatenating neighboring frequencies produce the fi-
nal data together with error bars at the 95% confidence
level. There is fair agreement between Monte-Carlo
simulations and analytical formulas to be subsequently
reported. Both predict sub-Poissonian photo-current
statistics. Even with one billion photon-absorption
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Fig. 6. Average number of photons in the cavity as a func-
tion of the normalized pumplng level P/py. Dotted line: my,

transition I2b) —= |1), dashed line: m,, transition
|2a) — |1}, Solid line: m =m, + m,,ﬁtmal of both transi-
tions. Laser parameters are N = atoms, p; = 632,

P,=316,00=632,p=1265,T= 300 K.

events, Monte-Carlo spectra exhibit large error bars.
An analytical method is to be preferred when it exists.
On the other hand, Monte-Carlo simulations do not rely
on linearization and provide a useful check.
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Fig. 7. Normalized spectral density, #, of the two-mode la-
ser. Line symbols and laser parameters are the same as in
Fig. 6 except for the dot-dashed line that materializes the
shot-noise level.
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Fig. 9. Monte-Carlo electron occupancy in CB as a func-
tion of energy position £ (referred to the CB bottom) and
thermalization rate p. Lasing level is E = ‘il] meV. Dots:
p= 25000 ns~!, dashed line: p = 1000 ns™, solid line:
p=250ns".

B. Analytic Model

Let us first set up the steady-state conditions. If n,,
j=1, 2, 3, denote the number of atoms in state j, we
have

ntn,tny = N. (2}

Let # denotes the net pumping rate, 7 the net stimulat-
ed rate, 9l the upper decay rate, & the spontaneous de-
cay rate from the upper to the lower working levels, and
9 the photon absorption rate. The steady-state condi-
tions then read (8) .-

I=U=D=R+, (3a)
2=, (3b)
where

g . Pni! Gu‘ = punb (43)
F=9n, 2=om, (4b)
R = (m+ Dn,—mn,. (4¢c)
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Fig. 8. Four-frame sequence illustrating the Monte-Carlo
simulation of a semiconductor laser. 10 equally-spaced en-
ergy levels are considered in VB and CB. Insets represents
the number of photon m stored in the cavity at some time by
stacked bricks. Arrows show electron moves from one en-
ergy level to another.
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Fig. 10. Monte-Carlo normalized spectral density ¥ as a
function of normalized Fourier angular pulsation Q. Gray
curve is the analytical calculation assummgl perfect ther-
malization from Eq. (22). Dots: p=25000 ns™", dashed line:
p=1000ns™", solid line p=250 ns™",

OTITHKA H CIIEKTPOCKOITUA tomM 94 N5 2003

S |

RATE-EQUATION APPROACH TO LASER LIGHT STATISTICS 811

A straightforward solution of Egs. (2), (3) and (4) pro-
vides the steady-state atomic populations #; and photon
number 1.

Within the weak-noise approximation, populations
and rates are split into steady-state values and fluctu-
ations. The instantancous photon number m is thus
written as {(m) + Am, where (m) denotes the steady-
state value. For rates, fluctuations consist of a deter-
ministic function and uncorrelated Langevin “forces",
i, J=(F) + AJ, the AJ term including a Langevin
force j(t) expressing the jump process randomness.
Thus

$=J+AJ, U=U+AU, (5a)
F=S+AS, 2=0+AQ, (5b)
9R=R+AR, (5¢)

where a first-order variation of the expressions in Eq.
(4) yields

AJ = PAn, +j, (6a)
AR = (m+ 1)An,—mAn, +(n,—n,)Am +r, (6b)
AS = YAn, +s, (6¢)
AU = p Any+u, (6d)
AQ = aAm +gq. (6e)

Similarly, a first-order variation of the population con-
servation rule gives

0 = An, +An, +An;. (7)

Let us consider first zero-frequency noise. Eq. 3,
when applied to variations, reads

AJ = AU = AR+ AS, (8a)

AQ = AR. (8b)
Replacing atomic populations and photon numbers by
their steady-state values, the above set of equations has

been solved. In particular, AQ is obtained as a linear
combination of the Langevin forces

Ag= ¥ ¢z ©)
ze{juq.rs)
where the ¢, are real coefficients that depend on the pa-
rameters N, P, p,,, Yand o. The detailed expressions, too
lengthy to be given here in their general form, are con-
veniently handled using symbolic calculations.

The normalized zero-frequency photo-current spec-
tral density is of the form

1 2
= =S z (o T (10)
Z€ Ly qiris}
where 6, denotes the spectral density value of the Lan-
gevin noise source z, equal to average rates,

Elementary events in V-type 3-level lasers (see Fig. 1) and
corresponding rate of change W,

Event Transition Rate
photon absorption Wy=om
pump absorption [1) —=|3) | Wa="Pn
coherent emission [2) —= 1) | Wi=(m+ 1)n,
coherent absorption [1) —=12) | Wy=mn,
spotaneous decay [2) —= 1) | Ws=1vym
upper decay [3) —=12) | Ws=mp,
6, = Pn,, ©, = p,n;, (11a)
O, = Yn,;, ©, = om, (11b)
= (m+1)n, +mn,. (110)

When these expressions are introduced in Eq. (10) an
analytical expression of J is obtained.

Consider now the very special case where Y= 0 and
N > q, i.e., the laser is thresholdless and has very low
loss. The normalized photo-current spectral density
reads

4Pp,
P+2p,)"

J is thus unity at low and high pumping levels and goes
to a minimum in between these bounds. The minimum
value, $ i, and the corresponding pumping value are

I

‘9mm = 5:
It can be shown that this minimum is the absolute min-
imum of $, irrespectively of the values of 7 N and o
[71.

A similar technique applied to A—-type 3-level laser
and 4-level laser leads to ¢, = 1/2 and $ ;. = 1/3, re-
spectively, These values are in complete agreement

$=1- (12)

with 3-levels theories proposed earlier by Khazanov et -

al. [8] and by.ralph:PRA91,ralph:Q093 and with the 4-
level theory by Ritsch et al. [6].

At some Fourier frequency € the generalized rate
equations read [4]

iQAm = AR-AQ, (14a)
iQAn, = AR+AS—AJ, (14b)
iQAn, = AU—AR—AS, (14c)
iQAny; = AJ-AU. (14d)

Again, we solve for AQ the linear system of fluctu-
ations and obtain for the normalized spectral density

5&(9)=$ ¥

ze {juq,rs}

c(Q)er(Qo., (15
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where the coefficients ¢, are complex and frequency
dependent and where the Langevin “forces" o. are still
givenin Eq. (11).

After rearranging, Eq. (15) gives the spectral densi-
ty in the form

agﬂl‘ + f«th T dy
Q°+5,0" +5,Q" +b,

where the coefficients @; and b, are real. The form in
Eg. (16) ensures that $() tends to shot-noise level at
high frequencies. Fig. 4 shows that $(Q) reaches its
minimum value at ) = 0.

When spontaneous decay from the upper working
level may be neglected (Fig. 4 (a)), light is always
sub-Poissonian and the lowest $—value occurs when
Plp, = 2. Figure 4 (b) illustrates the fact that spontane-
ous decay from the upper working level is inconse-
quential until y/p, = 3 x 1072. However, the light statis-
tics ceases to be sub-Poissonian when y/p, > 0.3 be-
cause the lasing threshold can not be reached anymore.

The intra-cavity photon statistics is characterized by
the Fano factor & = (Am?*)/{m), where m denotes as be-
fore the number of photons in the cavity. The variance
of m equals the integration over frequency of $ 4,,(2),
the normalized spectral density of Am. As previously,
9 Q) obtains by solving for Am instead of AQ and its
general form is

$(Q) =1+ (16)

a,Qt+4\Q +4a)
]
Q°+5,Q" +51Q% + b}
where a; and b;] are real coefficients. The Fano factor
1s thus

Fam(Q) = (17

N dQ
F = [$am( Q5 (18)

It has been already illustrated in Fig. 2 and successfully
compared to Monte-Carlo calculations.

11I. TWO-MODE LASER

Consider now a two-mode laser and let us focus on
normalized spectral densities of each individual mode
and of the total laser emission. As shown in Fig. 5, the
scheme starts from the 4-level laser. The upper lasing
level [2) has been split into two sub-levels [2a) and |2b),
both being able to relax radiatively toward level |1).
Optical gains of these two transitions are keptidentical.

The beating between the two optical modes is arbi-
trarily prescribed at a | THz frequency. Corresponding
energy splitting is thus € = 4.1 meV. The coupling
|2a) —= |2b) is ensured by a transfer parameter p. The
coupling |2b) — |2a) is slightly less, e.g. gp. As driven
by temperature it refills level |2a) from [2b) according
to Boltzmann law, ¢ = exp(—&/kgT). Atomic popula-

tions are supposed to be unable to respond to the very
high modal beat frequency.

It is straightforward to identify physical processes
and corresponding rates by analogy with previous dis-
cussion of Sec. 1. Let us moreover assume a weak cou-
pling between the two modes just like in the sargent
textbook. Thus both modes truly exist. For the sake of
simplicity, non-radiative relaxations [2a) —= |1) and
[2By —= |1) are neglected and the photon count of each
mode is supposed far greater than unity, m, > 1 and
my, > 1. Rates thus read

$ = Pny, U= p,n, (192)

R, = my(n,,—n), I = pn,,—gpn,,, (19b)
Ry = mp(ny—ny), D = pan, (19)

Q. = am,, 2= amy. (19d)

The stable two-mode steady-state solution is calculated
using conservation rules for populations and rates. Of
major interest are the modal steady-state photon num-
bers

. (1-q)p(P(N+o)p,+0op{P+p,))
¢ a(3Pp,+ p.AP+p.)

_ Ppi(pN-20)-0p(l —q))
“ a(3PPH+Pd(P+pn})

Figure 6 represents the average number of photons
in the cavity for a particular choice of p = 4p, that
roughly balances the two mode powers. Like for opti-
cally pumped single-mode lasers [7], m increases regu-
larly with pump intensity and saturates at very high lev-
el because of ground-state population depletion.

As was done before in Sec.6, total rates and popula-
tions are split into average values and variations. We
evaluate the normalized zero-frequency photo-current
spectral densities for each mode and for the total laser
output. The Fig. 7 gives plots of photodetection spectral
densities of each mode and of the total emitted light.
Again the parameter is the pumping P.

The total photodetection spectral density is nearly
the same as for single-mode 4-level lasers. Here again,
sub-Poissonian behavior is observed at high pumping
levels [7]. It can be shown that when . tends to 0, . re-
duces to

, (20a)

m —m,. (20b)

¢ = 2P p. +piP +pu)
(3Pp,+ pa(P+p,))

which admits the minimum value %, = 113 if P=p, =
= p4/3. Although pumping conditions are slightly dif-
ferent, the $ ;, value is the same as for usual 4-level la-
sers [6, 7].

The most important feature of Fig. 7 appears on in-
dividual mode spectral densities , and ¥, that are
much more "noisy' than previous total spectral density

2D
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$. Moreover, any attempt to balance mode powers
maximizes $, and $,. This effect, usually referred to as
the mode-partition noise, has often been observed. It is
very easily and straightforwardly explained from the
present rate-equation approach.

IV. SEMICONDUCTOR LASER

Actual semiconductor lasers are complex systems.
An idealized model will prove helpful. One-electron
energy levels in the semiconductor are supposed to be
of the form €, = ke, with & an integer and € a constant,
e.g. £ =1 meV. Allowed levels may be occupied by at
most one electron to comply with the Pauli exclusion
principle. The electron spin, ignored in the present pa-
per for the sake of brevity, is discussed for example in
[21]. Our model considers neither electronic superposi-
tion states nor any strong Coulomb interaction, approx-
imations made in virtually all laser-diode theories. In
semiconductors the allowed electronic levels group in-
to two bands, the conduction band (CB) and valence
band (VB). We suppose that both bands involve the
same number of levels. The band gap energy is instru-
mental in determining the laser oscillation frequency
but it will not enter in our model because of simplifying
assumptions to be later discussed. The number of elec-
trons matches the number of allowed energy levels so
that the electron-lattice system is electrically neutral. For
pure semiconductors at 7= 0 K, the N electrons fill up
the valence band while the conduction band is empty.

Rate-equation approach first requires the identifica-
tion of the elementary Markov processes that electrons
and photons follow. Photon absorption is supposed to be
only due to detecting atoms, that is, no additional optical
loss is considered. Detecting atoms are assigned a prob-
ability oun of being promoted to the upper state, where o
denotes a constant and m the number of photons in the
cavity. Stimulated absorption occurs with a probability
m for electrons in the lower working level to be promot-
ed to the upper working level. Stimulated emission is
modeled by assigning a probability m + | to electrons in
the upper working level to be demoted to the lower
working level. Setting as unity the factor that multiplies
the expressions m or m + 1 amounts to selecting a time
scale, e.g., 1 ns. In addition, the laser is assumed to be
single-mode, and lasing is supposed to take place be-
tween levels located in the middle of CB and VB.

Only perfectly regular electrical pumping is consid-
ered. Since output photons reproduce (for slow varia-
tions) the electrical source statistics, the laser is expect-
ed to exhibit sub-Poissonian light statistics at low base-
band frequencies [2]. Practical realizations involve the
electrical current generated by a cold high-impedance
electrical source, which is almost non-fluctuating as a
consequence of the Nyquist theorem [3]. In the model,
quiet electrical pumping is obtained by promoting low-
lying electrons into high-lying levels periodically in
time. As long as this time period remains short as com-

pared to the time scales of interest, this prescription im-
plies that the pumping rate is nearly constant.

Let us now consider the process of thermalization
between the electron gas and the lattice. To enforce
thermalization each electron is ascribed a probability p
per unit time of being demoted to the adjacent lower
level provided this level is empty, and a probability gp,
where ¢ = exp(—e/kT) of being promoted to the adja-
cent upper level if it is empty. If p is large, thermaliza-
tion is very efficient and electron-gas temperatures in
both bands are equal to the lattice temperature. An an-
alytic expression of the normalized spectral density can
be obtained in that case [11, 22]

cc(l+a)£_1
- *
s =1+—32" (@
L=® jept(1-F?
2a

where, F=Q%Q}, Q7 = (1 — 02WJ*/2, J* = (Je)/tksT),
J the pumping rate in electron per second, and o the
cavity losses. To the contrary, if p is not large, electron
gas temperatures are ill defined and the electronic pop-
ulations are out of thermal equilibrium, Up to a point, a
decrease of p is equivalent to an increase of the pump-
ing rate.

The above description of semiconductor lasers per-
mits Monte-Carlo calculation as depicted with the four
successive frames given in Fig. 8. Three elementary
processes are illustrated from a computer simulation in-
volving only 10 levels in each bands. At the start, the
system has already reached a stationary regime. A sam-
ple of the electron distribution is shown on the left. The
corresponding time and the number of light quanta
stored in the cavity are respectively 1, = 0.4825 ns and
m=2. The first event at T, = 0.4827 ns is a VB thermal-
ization. Its effect is to decrement the system energy by
€ since an electron is demoted by one energy step. The
second event at T, = 0.5339 ns is an electrical pumping
event that promotes the VB electron occupying the
lowest energy level to the highest energy level of the
CB. The third event illustrates stimulated emission be-
tween the lasing levels at 1; = 0.545 ns. As a result, the
number of light quanta is incremented from m = 2 to
m=3.

Results of Monte-Carlo calculations are given in
Figs. 9 and 10 where p, the rate at which thermalization
events occur is taken as the main parameter of interest.
The laser model includes 100 levels evenly-spaced by
£ =1 meV in each band. A lattice temperature of 7 =
100 K is assumed, thereby yielding g = 0.89. The regu-
la‘.crspmnping transfers one VB electron to CB at a rate
of Sns.

The occupancy in CB is plotted in Fig. 9 as a func-
tion of energy level £ referred to the bottom of CB. As
expected, a decrease of p (or an increase of pumping)
modifies the CB occupancy. The Fermi-Dirac (FD) sta-
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tistic is recovered at high p value, a regime where the
analytical model of Eq. (22) is in good agreement with
Monte-Carlo calculations. It is worth noting that sub-
Poissonian light statistics is achieved at low baseband
frequencies up to Q = 0.1.

At moderate p values, or equivalently at moderate
pumping levels, the occupancy slightly departs from
FD law and the frequency domain of sub-Poissonian
light emission is reduced. A FD fit of the occupancy
(dashed line in Fig. 9) gives a T= 132 K carrier temper-
ature. Inserting this electron-gas revised temperature
into Eq. (22) does not suffice to explain the Monte-Car-
lo results. In our opinion, spectral hole burning (SHB)
may be responsible for the obtained spectrum, even
though this effect does not appear conspicuously on the
occupancy curves. As a secondary effect, the Q-range |
over which light is sub-Poissonian get reduced by ap-
proximately fourty per cent.

Atvery high pumping rates, the SHB is conspicuous
on the solid line of Fig. 9 and the Q-range where sub-
Poissonian light is observed gets reduced by approxi- |
mately eighty per cent. The FD statistics evidently no
more apply and $(Q) is no more described by Eq. (22). I
These Monte-Carlo results show that SHB and carrier
thermalization are physical phenomena that one can not I
separate. Both act on the fluctuation spectra and the la-
ser dynamics with the consequence of a reduction of'the
sub-Poissonian emission range. |

|
V. CONCLUSION

The rate-equation approach was applied to various
laser schemes. An accurate description of laser light
statistics was obtained in every case, even when the la-
ser light emission is sub-Poissonian because of a driv-
ing quiet pump or because of the depletion of the lower
level by an intense optical pump.

For simple lasers schemes, fully analytical expres-
sions were derived for the output light spectral density
and the intracavity Fano factor. These expressions co-
incide with already published results.available only for
some laser schemes (3- and 4-level lasers) and special
values of the parameters (no spontaneous recombina-
tion rate, infinitely low optical losses). On the other
hand, the microscopic markovian approach underlying
rate-equations was exploited in Monte-Carlo calcula- |
tions. It was demonstrated to be fully equivalent to an-
alytical calculations considering the V-type 3-level la-
ser. A far more complicated laser scheme was consid- 1
ered in Monte-Carlo calculations, namely a quiet-pump
semiconductor laser. The method offers new insights
concerning the combined influence of carrier thermal
heating and spectral hole burning that occur when
pumping increases. Particularly, the reduction of the I
sub-Poissonian light emission range was demonstrated.
Earlier work [23] has shown that the rate-equation
method enables one to treat also phase fluctuations, ex-
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cess noise, non-linear gain, multiphoton process, and
electronic feedbacks from detectors to modulators.
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