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Rate-equation approach to atomic-laser light statistics
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We consider three- and four-level atomic lasers that are either incoherently (unidirectionally) or coherently
(bidirectionally} pumped, the single-mode cavity being resonant with the laser transition. The intracavity Fano
factor and the photocurrent spectral density are evaluated on the basis of rate equations. According to that
approach, fluctuations are caused by jumps in active and detecting atoms. The algebra is simple. Whenever a
comparison is made, the expressions obtained coincide with the previous results. The conditions under which
the output light exhibits sub-Poissonian statistics are considered in detail. Analytical results, based on linear-
ization, are verified by comparison with Monte Carlo simulations. An essentially exhaustive investigation of
sub-Poissonian light generation by three- and four-level lasers has been performed. Only special forms were

reported earlier.

DOI: 10.1103/PhysRevA.66.053818

L. INTRODUCTION

Interest in the statistics of the light emitted by atomic
lasers has been recently revived as a result of the fabrication
of microlasers [1]. The purpose of the present paper is to
emphasize that the rate-equation approach is a conceptually
and algebraically simple method, even when the generated
light exhibits sub-Poissonian statistics. Additionally, we de-
rive analytical expressions applicable to realistic lasers.

An introduction to the present rate-equation method as it
pertains to sub-Poissonian light generation can be found in
tutorial papers [2.3]. The second of these two papers consid-
ers as a starting point an isolated single-mode cavity contain-
ing N two-level atoms. From the equal-weight rule of statis-
tical mechanics, it is concluded that the Fano factor (ratio of
the variance of the number m of photons in the cavity to its
average value) is equal to 1/2 at equilibrium if, initially, all
the atoms are in their upper states and the cavity is empty
[4]. This equilibrium situation is easily peneralized to the
case of N four-level atoms with levels |0),|1),|2),]3), with
the [0)—|1) and |2)—|3) transitions coupled to M>N>1
modes. In that case, the Fano factor relating to the single-
mode cavity field essentially vanishes. The case of isolated
cavities in a state of equilibrium does not tell, of course, the
whole story as far as lasers are concerned. But the discussion
given by Amaud [3] shows how the pump-driven systems
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may be treated through a natural (though somewhat heuris-
tic) manner. Only one-photon processes are considered in
that earlier paper, as well as in the present one.

The rate equations treat the number of photons in the
cavity as well as the numbers of atoms in each state as clas-
sical random functions of time. The light field is quantized as
a result of matter quantization and conservation of energy,
but not directly. The rate equations should be distinguished
from the semiclassical theories in which the optical field is
driven by the atomic dipole expectation values. The theory
employed in this paper rests instead on the consideration of
transition probabilities, as in the Loudon [5] treatment of
optical amplifier noise, for example. Let us emphasize that
every absorption event reacts on the number of light quanta
in the optical cavity, particularly those occurring in light de-
tectors, irrespective of their locations. A single ideal detector
is considered in the present treatment. It collects all the gen-
erated light and has unity quantum efficiency. The semiclas-
sical theories are unable to explain sub-Poissonian light sta-
tistics because the light generation process and the light
detection process are considered separately.

Analytical expressions are obtained from the rate equa-
tions in a straightforward manner as solutions of a few linear
equations. The great advantage of our approach is that it is
easily applied to realistic situations in which many atomic
levels are involved, The analytical expressions are some-
times too lengthy to be exhibited in a paper. But symbolic
calculus enables us to easily determine the optimum condi-
tions of operation, for example the parameter values that
minimize the photodetection noise at some prescribed Fou-
rier frequency.

Our results always agree with more rigorous treatments
when the number of atoms is large compared with unity, and
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all coherences (off-diagonal density-matrix elements) are
damped at rates faster than the populations. The active me-
dium is supposed to be strongly homogeneously broadened
so that atomic polarizations may be adiabatically eliminated
[6]. 1t is also supposed that transitions other than those relat-
ing to the atom-cavity interaction are incoherent. The rate of
spontaneous decay from the upper to the lower working lev-
els may take any value, and in particular be set equal to zero.
The latter situation (¥=0 in our notation) occurs in ideal
“cavity QED lasers™ [7,8].

Let us now briefly review previous treatments of Poisso-
nian and sub-Poissonian light generation. One of the best-
known laser-noise theory is probably that of Scully and
Lamb [9]. Incoherent pumping is modeled by the indepen-
dent injection of two-level atoms in the optical cavity. This
model leads to a photocount statistics which is, at best, Pois-
sonian. More recently, Khazanov et a/. [10], Ralph and Sav-
age [11], and Ritsch ef al. [12] considered the situation in
which the populations of pumping levels may fluctuate. At
first, it would seem that this may only increase the noise. It
turns out, however, that the population fluctuations are cor-
related in such a way that the output light fluctuations may
be sub-Poissonian. It is difficult to pin point a simple intui-
tive explanation. It has been observed, however, that when
the lasers are pumped through a cascade of intermediate lev-
els, pumping tends to be regular [13,14], a situation some-
what similar to laser-diodes high-resistance driving condi-
tions. Other means of generating sub-Poissonian light have
been considered. Golubev and Sokolov [15] were the first in
1984 to point out that lasers with nonfluctuating pumps
should emit sub-Poissonian light. This conclusion has been
verified experimentally by Machida er al. [16] with the help
of laser diodes driven by high-impedance electrical sources.
The Scully and Lamb model has been generalized to account
for the regular atom injection [17,18]. Kolobov et al. [19]
made the interesting observation that the photodetection rate
spectral density may be below the shot-noise level at nonzere
Fourier frequencies in the case of Poissonian pumps. How-
ever, the photodetection rate spectral density remains at the
shot-noise level at zero frequency. Accordingly, such lasers
do not generate sub-Poissonian light in the sense defined
earlier. [t has been shown that three-level lasers, with coher-
ent decay to the ground state [20,21], and Raman lasers may
generate sub-Poissonian light [22]. We will not consider here
these more exotic configurations. A review is in Ref. [23].
Many other relevant references may be found in Ref. [7].

V-type incoherently pumped lasers were treated earlier by
Khazanov et al. [10]. Ralph and Savage [11.24] extended the
analysis to incoherently pumped A -type lasers and four-level
lasers. Ritsch er a/. [12] gave a description of four-level la-
sers for the two pumping schemes. These previous results are
exactly recovered from the present rate-equations method. In
particular, the expression for the internal cavity statistics of
four-level atoms with negligible spontaneous decay between
working levels, previously given in Eq. (4) of Ref. [12] is
recovered exactly [see Eq. (17) of the present paper]. If the
upper and lower decay times of four-level atoms tend to
zero, the laser is equivalent to a two-level atomic laser with
Poissonian pump [25]. In that limit, the expressions reported
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FIG. 1. Level schemes for a four-level atomic laser. For inco-
herent pumping, € =0. For coherent pumping, £ = 1. Assuming a
unitary gain g subsequently normalizes all rates to the correspond-
ing time unit.

in Arnaud and Estéban [26] in 1990 are recovered. The for-
mulas derived in the present paper for coherently pumped
three-level lasers appear to be new as well as results consid-
ering arbitrary decay rates and arbitrary cavity losses, to best
of our knowledge.

We first give in Sec. Il details on our rate-equation ap-
proach to laser modeling. The weak-noise approximation is
discussed and compared to the results of Monte Carlo simu-
lations. When both the number of atoms and the pumping
level increase, the Monte Carlo simulation computing time
becomes prohibitively large. In that case, analytical results
are essential, see Sec. III. The photocurrent spectral density
at zero frequency, the photocurrent spectrum, and the intra-
cavity Fano factor are obtained and illustrated for various
parameter values.

IL. LASER MODEL

The active medium is a collection of N identical four-level
atoms, see Fig. 1. Level separations are supposed to be large
compared with k5T, where T denotes the optical cavity tem-
perature and Ay is the Boltzmann’s constant, so that ther-
mally induced transitions are negligible. Levels [1) and [2)
are resonant with the field of a single-mode optical cavity.

The probability per unit time that an electronic transition
from level [1) to level |2} occurs is taken as equal to m, and
the probability of an electronic transition from |2) to |1) as
m+1 (the qualification “per unit time” is henceforth omitted
for the sake of brevity). This amounts to selecting a time unit
whose typical value depends on the gain medium. As a sec-
ondary result, each laser transition rate and laser parameter is
then normalized to this time unit. Decay from level |2) to
level |1) is allowed with probability y. This decay may be
either nonradiative or involve spontaneous emission into
electromagnetic modes besides the one of interest. The pho-
tons are absorbed with probability am, where & denotes a
constant, the absorbing atoms residing most of the time in
their ground state. These absorbing atoms model the trans-
mission of light through mirrors with subsequent absorption
by a detector.

“Incoherent™ pumping promotes electrons from level [0)
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to level |3) with probability 7. When transitions from [0) to
[3) and from [3) to |0) are both allowed with equal prob-
abilities, the pumping process is called “*coherent,” follow-
ing an accepted terminology. We find it convenient to denote
by £ P the |3)—|0) transition probability, with £=0 for in-
coherent pumping and €=1 for coherent pumping. “Coher-
ent” pumping is physically realized by submitting the atoms
to strong optical fields nearly resonant with the [0)—|3)
transition. This pumping field may possibly originate from
the frequency-filtered thermal radiation. Levels [0) and [3)
need not be sharp. Instead, they may consist of narrow bands
for improved coupling to the broadband pumps. One-way
incoherent pumping would be appropriate to describe laser-
diode pumps. Laser diodes have been treated previously on
the basis of the rate equations in Ref. [3]. Spentaneous decay
from level |3) to the upper working level |2) occurs with
probability p,, . and spontaneous decay from the lower work-
ing level |1) to the ground level with probability p,.

Since thermally induced transitions have been neglected,
the three-level F-type scheme (obtained when levels |0) and
[1) collapse) and the three-level A-type scheme (obtained
when levels |3) and |2) collapse) are not special cases of the
four-level scheme when ““coherent” pumping is considered.
They need to be treated separately using the same general
approach as discussed below for the four-level laser. The
detailed formulas. however, will be omitted for the sake of
brevity.

According to the previous model, the laser-detector as-
sembly is treated as a birth-death Markov process equivalent
to the master equation used by Rice and Carmichael [7]. It is
thus suitable for Monte Carlo simulations [27,28], thereby
illustrating the evolution of the number m of photons in the
cavity from which the Fano factor #=var(m)/{m) can be
extracted. Similarly, the instants 7, when photons are being
absorbed provide us with the spectral density of the photo-
current, whose normalized value . is unity for Poisson pro-
cesses. In the following, the normalized spectrum is denoted
by 7((), where {, the normalized Fourier angular fre-
quency, is called for short “frequency.”

Monte Carlo calculations have been applied to an inco-
herently pumped V-type three-level atomic laser. Qur pur-
pose here is to exemplify the results that can be derived from
the rate-equation method, and to provide a check on the va-
lidity of the linearization procedure to be later employed, see
Sec. III. The calculated intracavity Fano factor is represented
in Fig. 2(a). Spiking at threshold as well as sub-Poissonian
light statistics at high pumping are obtained in good agree-
ment with the data of Koganov and Shuker [29]. The nor-
malized spectral density #{{2) is represented in Fig. 2(b) for
two sets of parameter values. #{€}) is first evaluated for
each Monte Carlo run [30] and refined using a smoother
power spectral density estimator [31,32]. Averaging over
runs and concatenating neighboring frequencies produce the
final data with error bars. Again the low-frequency light sta-
tistics is found to be sub-Poissonian for appropriate pumping
levels.

There is a fair agreement between the Monte Carlo simu-
lations and the analytical formulas to be subsequently re-
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FIG. 2. Monte Carlo calculation results of an incoherently
pumped F-type laser. The parameters are N= 100 atoms, p,
=632, @=0.32. @ shows y=0; A shows y=6.32; & shows vy
=632. Error bars are for a 95% confidence level. (a) Intracavity
Fano factor & as a function of the normalized pumping rate P. (b)
Normalized photocurrent spectral density %7 as a function of the
normalized Fourier frequency (). Plain lines are analytical (see
text).

ported. We conclude from Fig. 2 that the linearization proce-
dure is a valid one, at least when the number of active atoms
exceeds about one hundred.

Finally, notice that even with one billion photon-
absorption events, Monte Carlo spectra of Fig. 2(b) exhibit
large error bars, The analytical method is thus to be preferred
when available.

HI. ATOMIC LASER LIGHT STATISTICS

Letn;, j=0,1,2,3, denote the number of atoms in state /.
with

notn+n,+n3=N. (1

Let 7 denote the net pumping rate, R the net stimulated
rate, i and D the upper and lower decay rates, S the spon-
taneous decay rate from the upper to the lower working lev-
els, and @ the photon-absorption rate. The steady-state con-
ditions then read

J=U=D=R+S, Q=R, (2)

where according to the probabilities enumerated in Sec. 11,
eight kinds of events may occur in the course of time,

J=FPny—€Pn;, U=p,ns, (3a)
R=(m+1)ny—mn,, D=pun,, (3b)
S=vyn,, Q=am. (3¢)
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Equations (1), (2), and (3) provide the steady-state atomic
populations #; and photon number m. In particular,

1

m==(F+ B +aFH), (4)
where

N
N = (5a)

[d 3

12 1+t
P=|=t —4+— (5b)
P Pd p:r
S L 1 .
_-;y=-./{.--l- —14+—(1+y—F y}]—y—L (5¢)
Pd

For moderate pump powers above threshold, m increases
linearly with P. The intercept with the m=0 axis may be
used to define the threshold pump power.

Our analytical results rest on a weak-noise approximation.
Populations split into steady-state values and fluctuations.
For example, the instantaneous photon number m is written
as {(m)+Am, where (m) denotes the steady-state value. The
rates sphit into steady-state values and fluctuations consisting
of a deterministic function of the population fluctuations and
Langevin “forces.” These forces are J-correlated in time
(white noise) and uncorrelated with one another. For ex-
ample, 7 splits into J={.7) and AJ. The latter is the sum of
a deterministic function of the population fluctuations, and a
Langevin force j(f) expressing the jump process random-
ness. Thus

T=J+AJ, U=U+AU, (6a)
R=R+AR, D=D+AD, (6b)
S=S+AS, Q=0+A0, (6¢)

where
AJ=PAn,~€PAn;+j, AU=p,Ans+u, (7a)
AR=(m+1)Ans—mAn;+(ny,—n)Am+r,
AD=p Any+d, (7b)
AS=yAn,+s, AQ=alAm+gq. (7¢)
A first-order variation of the expressions in Eq. (3) has been
performed.
Conservation of the rates gives
AJ=AU=AD=AR+AS, AQ=AR. (8)
Since the total number N of atoms is constant, we have

Ang+An +Any,+Any=0. (9)
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Replacing atomic populations and photon numbers by their
steady-state values, the above set of equations can be solved.
In particular, AQ is a linear combination of the Langevin
forces,

AQ= c.z, (10)

zef{jduq.urs)

where the ¢, are real coefficients that depend on the param-
eters N, P, £, p,, ps. v, and @. The normalized zero-
frequency photocurrent spectral density is of the form

) 1
I=— ¥ (11)
XM zeljduq,rs)

where o, denotes the spectral density value of the Langevin
noise source z, equal to average rates;

0;=Pny+EPn;y, T, =P N, (12a)
:r,={m+1}n2+mn|. Tg=Palty, (l2b)
Te=1yn,, r,=am. (12¢)

q

When these expressions are introduced in Eq. (11) an ana-
lytical expression of 7" is obtained. Three special cases are
considered below (a) y=0 and m large compared with unity,
(b) N> a, and (c) y=0 and N>a.

(a) If spontaneous decay is negligible (y=0), Eq. (11)
yields

2 872 (6—4.49)7 2(1+4£)F2
+ S ) +
(@ VN R S ) i

| 27Q7-p))
Palu

=1+

(13)

where & and ./ are defined in Eq. (5). The normalized
spectral density is unity at low and high pumping levels. For
some constant ./ value, .%" reaches its minimum value

24 = 1)+ 11+ €8N —1)+15)

o ’mr'rr= b {14
2(3+48) (4 —1)2 )
when
# ] P 7{1+26)—(2+3¢) 15)
P 1H6  pa o@D -
(b) When N>a. Eq. (11) yields
2 457+ 2y BHA T+ 872
o . A : (27)_ ;7
Pa=VY Pa Pa D
4 2 y=paNpa—29) _2(1+€ VP y=pa)
pfipu pdpxzu
(16)
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FIG. 3. Contour plots of the zero-frequency normalized photo-
current spectral density > for four-level atomic lasers as a function
of y/py and P/p,. Parameters are N=10% atoms, a=6.32, p,
=632, (a) Incoherent pumping, p,=316. (b) Coherent pumping,
P,=949. In the white area, the light statistics is super-Poissonian.

Figure 3 gives the normalized zero-frequency photocur-
rent spectral density . (Plp,,v/p,) in the form of contour
plots, selecting P/p,=2PIp,; for the case of incoherent
pumping and P/p,=%P/p, for the case of coherent pump-
ing. The darker the area, the lower is the spectral density.
Since dark areas are wider in Fig. 3(a) than in Fig. 3(b),
incoherent pumping is to be preferred. Figure 3 shows that
sub-Poissonian light generation by optically pumped four-
level atomic lasers is robust against moderate spontaneous
decay and pumping level changes. The optimum conditions
{darkest areas) are defined in Eq. (15). But small departures
from these conditions do not increase the noise much.

(c) If both ¥=0 and N> «, the spectral density obtained
either by setting ./ = in Eq. (13) or ¥=0 in Eq. (16),
reads

2depn[pd+2(P+P€+pu)}

=1
[2Pp,+pAP+PEt+p,)]

(17)

an expression that coincides with Eq. (4) of Ref. [12]. The
absolute minimum value and corresponding conditions are
obtained from Egs. (14) and (15),

1+2¢ 8 1 o 1+2¢

Smn=33400 7. 146 p, 2040
(18)
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TABLE [. Minimum value of the zero-frequency photocurrent
spectral density .#,,;, and intracavity Fano factor . for three- and
four-level atomic lasers. The conditions on P, p,, and p, are
given. Spontaneous decay from the upper working level is ne-
glected and N> a is assumed.

Laser Foiln F Conditions
A-type three-level * 1/2 3/4 pa=2P
A-type three-level ? 213 5/6 Pa=3P
V-type three-level ® 112 3/4 p=iP
V-type three-level ® 5/6 11112 Pu=3P
Four-level * 1/3 213 Pu=P, pa=2P
Four-level 317 577 p.=2P, p,=%P

“Incoherent pumping.
b, :
Coherent pumping,.

For incoherent pumping, £€=0, we have therefore .7,
=1/3 when p,=P and p,=2P. For coherent pumping, {
=1, we have .%,,;,=3/7 when p,=2P and p,=4/3P.

Table 1 gives the minimum spectral density values achiev-
able with optically pumped three- and four-level atomic la-
sers. Under the conditions of negligible spontaneous decay
and N>, the intracavity Fano factor depends linearly on
the zero-frequency normalized photocurrent spectral density
[15], 57=25—1. This relation does not hold in general.

At some Fourier frequency £}, the generalized rate equa-
tions read [2]

iQAm=AR—-AQ, (19a)
iQAn,=AD—AJ, (19b)
iQAn;=AR+AS—AD, (19¢)
iQAn,=AU—-AR—-AS, (19d)
iQAn;=AJ—AU. (19¢)

Equations (6), (7), (9), and (19) are solved for AQ. The
formula for the light spectral density S is the same as Eq.
(11) except that the coefficients ¢, are complex and fre-
quency dependent,

1 = P
A=— T LD,  (20)

QM zefjdugq.rs)

where the Langevin “forces™ o, are still given in Eq. (12).

After rearranging, Eq. (20) gives the spectral density in
the form of the ratio of two polynomials of degree 4 in 27 in
the numerator and denominator. .”{{}) tends to unity (shot-
noise level) at high frequencies.

Figure 4 shows that .7 reaches its minimum value at )
=0. When spontaneous decay from the upper working level
may be neglected, light is always sub-Poissonian and the
lowest % value occurs when P/p,=1/2. Spontaneous decay
from the upper working level is inconsequential until y/p,
~3 10 2. The light statistics ceases to be sub-Poissonian
when y/p,>0.3.
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FIG. 4. Contour plots of normalized photocurrent spectra /" as a
function of the normalized Fourier frequency  and for incoher-
ently pumped four-level atomic lasers. Parameters are N = 10° at-
oms, a=6.32, py=632, p,=316. (a) Dependence of .#{{1) on
Pip; with y=0. (b) Dependence of S{{}) on ¥/p, with P
=316.

The intracavity photon statistics is characterized by the
Fano factor 57=(Am?)/(m), the variance of m being ob-
tained by integration over the frequency of the spectral den-
sity of Am. The Fano factor of an incoherently pumped four-
level atomic laser has been calculated as a function of the

PHYSICAL REVIEW A 66, 053818 (2002)

pump and spontaneous decay rates. The results fully agree
with those previously reported by Koganov and Shuker [29].

IV. CONCLUSION

We have considered optically pumped four-level and
three-level atomic lasers in resonant single-mode cavities.
The light statistics has been obtained from a simple rate-
equation approach, using both a Monte Carlo simulation and
an analytical method based on linearization. The emitted
light may be sub-Poissonian as was previously observed by
many authors. Whenever a comparison is made, exact agree-
ment with the previous results is noted. In the case of
coherently-pumped three-level atomic lasers, our results are
new to best of our knowledge. When the assumptions of
negligible spontaneous decay and large atom numbers are
not made, the results presented in this paper for the internal
and external field statistics are new,

For practical reasons, Monte Carlo simulations were re-
stricted to N= 100 atoms. Because the analytical formulas,
obtained through the use of symbolic calculus, are lengthy
they were not written down in the paper. However, they were
employed to determine the conditions under which the spec-
tral density of the photocurrent reaches its minimum value.
For example, we found that when spontaneous decay from
the upper working level may be neglected, three-level atomic
lasers may deliver light with fluctuations at half the shot-
noise level. Four-level atomic lasers may deliver light with
fluctuations at one-third of the shot-noise level. The photo-
current noise decreases further and tends to zero, under ideal
conditions, when the number of levels becomes large [14].
The present theory may be viewed as a building block to be
incorporated in a fully realistic laser-noise theory accounting
for phase noise and spatial and spectral inhomogeneities
[26].
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