PULSE PROPAGATION IN OPTICAL FIBERS

3. ARNAUD® and . FROEHLY'"

INTRODUCTION

In this paper, we have no attempt to present some results
which, basieally, have not been known before. What we wish to empha-
size is the analogy that exists between space and time concepts,
pulse spreading in dispersive media being analogous to beam diff rac-
tion.

I IME-HARMONIC PLANE WAVES

Let us first consider a time—harmonic plane wave propagating

in the x-z plane. The field has the form

Ylx,z,t) = cos(kxx + k?z - wt)

= Real Part of {exp[i(kxx + kzz)] exp (~iwt)} (1)

to within arbitrary amplitude and phase factors. The numbers k_, kz
-+

can be considered the components of a wave vector K. The angular fre-

quency w is taken to be a constant here. The crests of the field are

clearly given at t = 0 by the straight lines
k.x + k,z = 2mm 3 m=0Q, £, ¥2 ... 2)

3 -3
shown on top of Fig.l (a), these lines being perpendicular to the k

vector.
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Ihe dintance between adjacent crests in the x direction at a given time

tn A= Zufk_, and, similarly A_ = 27/A_. We define k = |ﬁ|=(k2 + kz)l!Z

X X z z & z
and the wavelength in the medium (not to be confused with the free-space
wavelength A ) is A = 27/k, If ) depends on the direction of K, the me-
dium is called anisotropic. In isotropic media the curve described by
the tip of the K vector is a circle. The nonzero curvature of that cir-
cle is responsible for beam diffraction as we shall see.

Let us now consider phenomena depending on time (t) and one

spatial coordinate (z). The field has the form

y{z,t) = cos(kz - wt) = Real Part of Exp[i(kz - w;)} (3)

We shall omit the subgseript 2 on k when there it po risk of ambiguity.
The crests are given by the straight lines

kz — wt = 2mn 3 m= 9, 1, 22 ... (4)
shown on top of Fig.l(bh). If T denotes the wave period, that is the

interval of time separating two successive maxima of the field, then

w = 2n/T. Similarly, k = 2n/A. Clearly from Eq.(3), the wave crests in
space—-time are perpendicular to the Q vector with components k, —w. The

k curve at the bottom of Fig.lb is a straight line going through the
origin when the medium is non dispersive, k being proportional to w, or

k = (w/e)n, with n a constant. Alternatively one can say that the phase
velocity v, = ¢/n is independent of frequency. But a general medium is
dispersiver For example, if we restore the dependence of ¢ on the x coor—
dinate and maintain kx a constant (this is the case when a plane wave is
launched on a transmission grating of period p, then kx = 42n/p, and for

4 metallic waveguide or an oversized optical fiber of width d : kx = n/d),

k is no longer proportional to w. In that sense, free-space can be viewed as

dispersive, Indeed, in free space
2 2172
k, = [ -k ] , k= constant. (5)

implies a nonlinear dependence of k_ on w.

An optical fiber (of axis z) is dispersive also because silica
glass is a Lorentz medium that can be modeled by microscopic oscillators
in the ultraviolet (UV) range and in the infrared (IR) range. Low-loss
propagation occurs in between (from, Sy, AQ =~ 0,8 uym to 1.7 um). In such
a medium the refractive index squared is,neglecting losses,
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where Al, A? are oscillator strengths and Wy, w, are resonant frequencies

in the UV and IR, respectively.

We have the correspondence

Xz —
k{or kz), -
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RAY TRAJECTOR LES

Nesxt, let us consider the average divection, or speed, of wave
packots. These quantities involve now the slopes of the k curves shown
nt the bottom of Fig.l, in the neighborhood of the ecarrier wavevector
k |

(4]

In the x-z space domain, we need consider transversely limited
hoams whose widths comprise however many wavelengths and we are concerned
with the direction in which the beam has maximum energy. This is the ray
dirvection. In the space-time domain, we are considering wave packets of
duration much larger than the period T. The average speed of a wave packet
in called the group velocity, and its trajectory in space-time is called
a worldline (or space-time ray).

As we shall see in the next section beams and wave packets in
penernl spread out and distort about their average motion, and one may
wonder il the wave packet center is a well-defined concept. This is so
because, as we make the propagation length L longer and longer, the tran—
it time ¢ = I.;’ulrll increases in proportion to length, while the pulse
aspreading inc ru.'l::ﬁs only in proportion of L §¥ e ave daveful to inctease
fhe input pulse duration in proportion to vL in order to minimize its
Iroquency spectrum. Thus, the aeccuracy with which one can measure the
proup velocity can be increased without limit, in spite of the wavepacket
leformation,

l'o summarize this section, we have the correspondance

ray trajectory in space N world line

dpace-space ¢ + space-time

Finally, we shall be concerned with the distortion of a beam

about 1ts averapge path and the spreading of a wave packet about its world
line, with the correspondence

diffracrion £ > pulse spreading

dpace-space P 3 space—time

Mhese lotter effects are dependent on the curvature of the k-curves shown

At the bottom of Fig.l. We could go on step further and consider geome-

trical aberrations in space and time, but this will not be discussed here.
BPecause we shall be concerned only with a small neighborhood

ol the w, k curve, centered at o ko’ we restrict ourselves to the folle=

wing representation of the kie) curve

K=k + au-w ) + 5 blo=w) (8)

(§] (%) < Q

2 2 . i y
were a = dk/dw, w = w_and b = d'k/dw", w = w . For a given material
(8]
and a given carrier frequency (or free-space wavelength Ao}, ko, a and b
are fixed quantities., It is useful to introduce in place of k., a, b

dimensionless quantities n, D and M as was done in Ref.l

k = (w/e)n
3 el ey el = 1
W (e R e - (Ai{n){dznfdli) (9)

where all quantities are evaluated at w = w e
For silica at lo = 0.9 um, for example, we have :

¥ 3
n=1.45 ; d=8.8x107 ; M=12x10

As ) increases, the d factor increases slightly, while M goes to zero
arougd 1.3 um, and then becomesnegative. For other materials of practical
use, the wavelength at which M is zero may be larger, e.g., }0 = 1.7 ym
for pure germania. The physical significance of these results will be

appreciated later.

OPTICAL LENGTH OF A SPACE-TIME RAY

We wish to evaluate the field generated at z and time t by a
short pulse (not a Dirac function) with carrier frequency Wy emitted
at z = 0 and t = 0. Within the approximation of Eq.(8), this is the
Van Vleck propagator (1928) discussed in Ref.l for square—-law anisotropic
media. We restrict ourselves here to homogeneous media, and we will give
only the rapidly varying phase term exp[iS(z,t)]. It is understood that,
at the end of the calculations, one must take the real part of the quan-
tity obtained, since the field, being a measurable quantity, must be real
at some z, t point (in many optical experiments, however, it is sufficient
to know the complex field, or more precisely, the analytic signal).
Because the medium is homogeneous and time-invariant, the world

lines are straight with slope

r dk
et bl + b (w-uo) (10)



Wharve a and b oare the constants fntrodoced dn Fg, (). This slapes is the

reciprocal of the group wvelocity voo Lt taken the value a precigsely at
=i Unless b 0, the world | nr¥ fan out from the origin z = t = ().,
Fhe dnitial pulse has a Prequeney spectrum centered aboult w0 with a
(
width reciprocal to the (as yet unspecified) pulse duration. The frequency

that reaches some specified point 2z, t in space=time is clearly, from

lg. (1O}
w= (c/z — a)/b (@RS
Bevause the pulse spectrum is fairly pnarrow, most of the pulse energy is
to be found whenever t/z is close to a (reciprocal of the group velocity).
I'he spatial analog of the situation depicted above are rays
critted trom a small spot (not quite a point source). The rav directions
ire normal te the surface of wave normals x/z = dk _/dk . This is only
g %
for isotropic media that we have x/z = k(}k? (rays directed along the r
vectora)d.
Next, we caleculate the phase 5hifL[see Eqs (3)]
S(z,t) = kiw) z - ot (12)
Substituting w=w from Eq. (11) into Eq. (8) and Eq. (12), we obtain,
alter rearranging,
- § = ut -kz *x(t - az)fbz (13)
[} o 2
ln space-space, at some fixed frequency w, S/27 (if this is
anoanteper) corresponds physically to the number of crests of the field
[rom & 4 = o to the X, z point, at some given time. Alternatively, we

can view the 5(x,z) = constant curve as the wavefront emitted by the
vadiating spot. This curve differs vastly from the surface of wave normals
(K curve), except if the latter is circular.

In space—time 8/2n (if this is an integer) is the number of crests
from t = 2 = O to the t, z point. (For the analogy to be complete, one
ahould restore the x coordinate and keep kx a constant, in the same way as
W kupt w a constant previously).

In connection with the hamiltonian - lagrangian formalism de-

viloped in Ref.l, note ineidentally that Eq. (l10) is one of the two

Hamilton's equations, the Hamilton characteristic function being taken
as w o= wik). 8 in Fq.(13) is the produet L(z, dz/dc) x t, L being the
Lagrangian function, easily deducible from the Hamiltonian function.
Note also that the result in Eq. (13) can be obtained alter-—
natively by expanding w up to second order in k - kO (instead of the
opposite), provided z is replaced in the denominateor of the last term
by t/a. This is a permissible approximation because the power is signi-

ficant only in the neighborhood of z = t/a.

REPRESENTATIONS OF PULSE SPREADING

It is often pointed out that pulse spreading in dispersive media
is analogous to beam dilfraction. In particular, a gaussian pulse of

carrier frequency u and initial duration 9, (defined at the 1/e point of the

field intensity) spreads out after a propagation lenmgth 2 to o given by

Gz = 02 - b2 zzfcz (14)
o )

where b = dzkfdwz, w =W, as before. This result can be obtained by

multiplying the pulse spectrum

[

EKPLT %-oz(w-wc)z} (15)

by the phase function exprik(m}z] and performing a Fourier transform back
to the time-dependent field. It is quicker to use the complex-ray repre-
sentation of gaussian beams proposed by one of us in 1968 for isotropic ™’
media and shortly there after for anisotropic mediai.

The half-width of a gaussian beam propagating in a medium with

. 1
wave number K_ on the other hand spreads out according to the law

2
=22l gl (16)

whose similarity with Eq.(14) is obvious., The space—time analogy is of
course not limited to gaussian beam pulses. More generally, one can set

up a vertical axis t - zfvg, where ¥ is the group velocity, and describe
pulse spreading as if it were a diffraction problem in medium with wave
number b'l. This procedure, however, is incomplete and provides only pulse

envelopes. The reason why the above description is uncompleteis that pulse

ppreading o analogous to diffraction In andpotropi modia, while
L. ClB) an weltten, is dapplicable only to ilsotropic media, [t takes o

copordinate transformation Lo go 1L rom .'|;|]:u~|||n]|i1 (N} |_~.n||‘\1|ni|- media. The

gavpuban beam described by Eq. (16) for example, has zero average transverse
apatial frequency at =z 0, while pulses have always non zero carrier fre-
quencies, Lt is not sufficient to subtract z/v_ from L to take that fact
B
inta aceount.
It is however possible to find coordinates f, ¢ such that the
expresgsion for the phase shift 5 in Eq.(13) be equal to m(ﬂz + CZ)IXZ‘
an it would be the case for isotropic media, in the neighborhood of the
proup delay, up to second order. We will give eonly the result : one must
wet on the vertical axis, instead of t the quantity
Lnazﬂ i 20
108 sin €
€ =R ST = o S (17)
v v
-3 @
On the horizontal axis, instead of z, one must set
t= (-1 sin 0 cost 2 (18)
v v
b g
and the effective angular frequeney o is
We=w /fgin 0O (19)
o
[t thene cxpressions, © defines the direction of a pulse at the mean group
, -1 . 5
velogity v. = a "5 v, = wofko 1s the phase velocity. We have
& .
1/2
bai % = quzay ) (20)

il we introduce the dimensionless parameters M and d. This representation
1o restricted to positive M/d ratios (in silica, Ao < 1.3 um).

Note, however, that the field modulus is unchanged if M is changed to -M
{as an example see Eq.(l4) where only I)2 enters). This ocobservation extends
the range of validity of the proposed representation. For the values of n,

Joand M given earlier (Silica at Ao = 0.9 ym), we find from Eqs.(17) to (20)

6 = 50°
£ r = Li45 zfe

L= 0.0063 2/c

@ = 435 Terahertsz

where ¢ is the velocity of light in free space. Using these coordinates,
pulse spreading can indeed be accurately described if it were beam dif-

fraction in free space.

GENERALIZATIONS

The complex ray representation of gaussian pulses alluded to
before enables us to deal with media that are not only dispersive but also
have quadratic spatial temporal variations of the refractive index. For
example, the pulse spreading of tubular modes measured in Ref. 5 by in-
terferometric techniques can be dealt with accurately using such a repre-—
sentation.

Nonlinear (Kerr) effects can be dealt with also, and solitary waves
discovered, with the above formalism, provided one assumes that the refrac-
tive index is a logarithmic (rather than linear) function of the optical
intensity. Whether this assumption is academic or has some physical signi-

ficance remains to be seen.
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