Eur. J. Phys. 21 (2000) L15-L16. Printed in the UK

PIl: S0143-0807(00)08852-8

LETTERS AND COMMENTS

Pulsating Gaussian wavepackets and complex

trajectories

J Arnaud
Mas Liron. Saint-Martial 30440, France

Received 21 October 1999 in final form 4 January 2000

Abstract.

Gaussian  wavepackets illustrate a  basic
feature of quantum mechanics. namely
the fact that any reduction in particle-
position uncertainty increases the momentum
uncertainty. Likewise. Gaussian optical or
acoustical beams illustrate the basic concept
of diffraction in free space or square-law
media. The present letter offers a simple
picture of Gaussian wavepacket (or Gaussian
beam) evolution. Suggestions are made at the
end of the paper for employing that picture in
a classroom.

Consider a particle of mass m and
position v subjected to a restoring force —K x.
The equation of motion of x = g(r) reads
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where the oscillation (angular) frequency is
) JK/m. The purpose of this paper
is to show that the construction of Gaussian
wavepackets from complex solutions of (1)
provides a more intuitive picture than do
formal solutions. such as those given in [1]
and the references therein.

A complex trajectory ¢(r) is defined as
g'ir)y +ig" (1), where ¢'(t) and ¢" (1) denote
two real solutions of (1) not proportional to
one another. One can show that
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(where f2 denotes the Planck constant divided
by 2. and the arguments 7 of g(7) and k(1)

Yix.1) = exp [ik{r}

dg
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hk = k" +ik") =m
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Pulsating Gaussian wavepackets are constructed from complex trajectories,

are occasionally omitted) is a solution of the
Schrodinger equation for the potential V (x) =
)

Kx</2
1. 5
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To prove this, it suffices to take the logarithm
of (2). differentiate once with respect to 1 and
twice with respect to x. substitute in (3) and
rearrange.

The solution (2) was first obtained in 1968
for the analogous problem of Gaussian beam
propagation through inhomogeneous media
[2]%, the medium axial coordinate z playing
the role of time r, and the electric field
E(x, z) the role of the wavefunction ¥ (x, 7).
Equation (2) is then easy to interpret when ¢ is
a real function of time: in the argument of the
exponential. x* /2¢ expresses the departure of
a circular wavefront from the x-axis. On the
other hand, the pre-factor 1/,/¢ follows from
the law of energy conservation that entails that
|E|*¢ should be a constant. The singularity al
¢ = 0 is removed when complex values are
assigned 1o ¢, and Gaussian beams are then
obtained.

The real and imaginary components
g'(1) and ¢"(r) of (1) may be viewed as
the two transverse (x,y) components of a
real ray trajectory.  Accordingly. Gaussian
wavepackets may be simulated with the help
of light rays. launched off-axis. and possibly
refracted by ordinary lenses (see figure 2.4 of
[21).
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i In reference [2], see especially figures 1.9, 1.10 and
2.4,
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L16 Letters and Comments
The authors of a recent text-book [3] (see
page 45) give the Gaussian solution in a form
resembling (2) but with the argument of the
exponential term written as —(m/2/)C (1)x7,
where C(r) is defined as a solution of the
nonlinear differential equation: dC/dr =
iw? —GC, They do not point out that the
function ¢ (r) defined by iC = (dg/dr)/g
obeys the much simpler equation (1).

It follows from (2) that the probability
density for linding the particle at x at time
¢ is a Gaussian

N ¥ Y
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where x denotes proportionality, and
I o k" —q"k
— = Im ( ) = "’- = 5{’}1— (5)
E(r) g g~ +q"

where Im represents the imaginary part of its
argument. It is thus natural to normalize the
complex trajectory ¢(7) by the condition

q’k” - q"k' ==, (6)

Differentiating the left-hand-side of (6) with
respect o ¢ and using (1), one observes that
this condition holds at all times if it holds
alt = 0. The width &(1) of the Gaussian
wavepacket defined in (5) s then simply equal
to the modulus of ¢(1), that is: E)? =
q’t.fl: ¥ q"(r)z. It suffices to find two real
solutions ¢'(1) and ¢" (1) of (1), and normalize

them according to (6), to obtain £(r). For
example

¢'(1) = E(0) cos(ar) ;

q ()= B sin et @)

mawé (0)
give
E(1)7 = [£(0) cos(wn)]?
h :
4| ———=sin(wt) | . 8
I:mmE[{IJ sl il )

This solution coincides with equation (8) of
[1] if the changes of notation Ax — £/V2
and @ — 1/£(0) are made.

Alternatively, the complex trajectory may

be written as

gy =a'e +a e

N 1 (9)
2a =E(0) £ meE (0)
in which case £(r) may be viewed as the length
of the sum of two constant-length vectors
rotating in opposite directions in the complex
g-plane.  The wavepacket pulsates unless
a =0.

As a lurther description, consider an
ellipse centred at the origin rotating at angular
frequency @ in the two-dimensional phase
space ¢. dg/d(wr). The projection of that
ellipse on the x-axis, representing the width of
the wavepacket, pulsates at twice the angular
frequency w. This phase-space picture is
often employed in ‘quantum optics’ ([4], see
especially the cover page and figure 3.3).

Because the complex-trajectory picture
of Gaussian wavepackets is algebraically
simple and easy 1o visualize, students may
appreciate  being presented this type of
solution before going into more formal
methods. I suggest that the evolution in
time of a free particle be treated first. In
that case. complex rays may be represented
as straight lines rotaling about some non-
intersecting axis, as discussed above. It is
well known in geometry that such a rotation
generates a hyperboloid of revolution (the
profile of Gaussian wavepackets). The next
step would consist of letting the straight line
(a geometrical optics ray) be refracted by a
single converging lens, and subsequently by a
sequence of closely spaced weakly converging
lenses.  The latter experiment illustrates
Gaussian wavepacket pulsation.
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