PHOTONIC NOISE WITH NONLINEAR GAIN

Indexing terms; Semiconductor lasers, Noise

For frequency-independent gain and loss, the circuit theory
of photonic noise based on the Nyquist noise sources reduces
to a corpuscular theory that postulates independent shot-
noise fluctuations of the particle rates. For linear gain, the
corpuscular theory coincides with standard rate equations
(SREs). When the relative gain compression is comparable
with unity, however, SREs are in error by a large factor. The
exact theory shows that in the presence of nonlinear gain,
photonic noise may be less than shot noise, even when the
injected current exhibits shot-noise fluctuations. This new
effect cannot be predicted by SREs.

When light from a laser is applied to a detector (Fig. la), the
detector current fluctuates. For an ideal detector these fluctua-
tions are attributed to photonic noise, ie. to the random
arrival of photons on the detector, each photon generating
one electron. Photonic noise can be split into an ‘intensity
noise’ of a classical nature and a shot-noise term expressing
the independent generation of photoelectrons. If a linear
attenuator is introduced between the laser and the detector
the relative-intensity-noise (RIN) remains the same.! This con-
clusion can be proven from egn. 2 to hold even when photonic
noise is below shot noise, in which case a negative RIN can be
formally introduced.
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Fig. 1 Laser-detector arrangement and schematic diagram applicable to
rate-equation theories
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J. S, R, D denote particular rates, N the number of electrons and P
the number of photons in the laser cavity

a Laser-detector arrangement

b Schematic diagram applicable to rate equation theories

Laser intensity noise has been investigated in the 1960s on
the basis of quantum mechanics in the form of rate equations
that describe the time evolution of the number of electrons N
and number of photons P. In the following the approx-
imations and terminology relevant to laser diodes are used.
Standard rate equations (SREs) are written below, for simpli-
city, at zero baseband frequency. Full population inversion
and shot-noise fluctuations of the injected current are implied.
We have?? (see Fig. 1b)
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J denotes the injected electronic rate that is supposed to be
independent of N, S(N) the spontaneous emission rate, R(N,
P) = G(N, P)P the rate at which electrons are converted into
photons in the oscillating mode by the process of stimulated
emission, and D the cutgoing photonic rate. Subscripts denote
partial derivatives. Upper bars that denote average values are
omitted when no confusion with instantaneous values may
arise. The Langevin terms n(t), p(t) in eqn. 1b are white pro-
cesses whose double-sided spectral densities & are given in
eqn. le. The spectral density of the independent shot-noise

process d(f) that accounts for photoelectron shot-noise is
equal to the average photonic rate D. SREs are obtained semi-
classically by considering that spontaneous emission adds to
the oscillating field a small random field, the spontancous rate
in the mode being equal to D/P = 1/1,, where 7, denotes the
photon lifetime. An expression for photonic noise 6D is easily
obtained from the system in eqn. 1. It is shown below,
however, that strictly speaking, eqn. 1 is valid for linear gain
only, that is when the gain G does not depend on the photon
number P.

A different theory of photonic noise has been proposed*:*
called ‘circuit theory’. This theory rests only on the Nyquist
formula that associates noise voltages to resistors, and on the
law of energy conservation. It has been found to agree with
quantum mechanical results even for nongclassical states of
light and electrical feedback,® but is simpler. When the loss
and the gain are frequency-independent, this circuit theory is
equivalent to a corpuscular theory in which particle rates
consist of a classical fluctuation plus an independent shot-
noise fluctuation.” Each shot-noise fluctuation corresponds to
a Nyquist noise voltage.

The corpuscular theory reads as eqn. 1 except that eqn. 1b
and 1d are replaced by the most transparent relations
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The white-noise processes j, s, r and d are independent. Note
that d(t) enters in both eqn. 2a and eqn. 1d. This is why
sub-Poissonian photon statistics may be obtained from this
formulation. Let us recall that at zero frequency the spectral
density of the weighted sum ax + by of two processes x(1), (t)
is given by

Pocry = a2F, + bEP, + 2abS,, 3)

In the linear gain approximation (Gp= 0) it can be shown
that the expressions obtained from egns. 1 and 2 for all
measurable quantities are identical.’® However, let us now
compare the two formulations in the case of nonlinear gain. It
is convenient to introduce nondimensional parameters

(N/RIR,= ¢ (P/[R)Rp=1—73 (4a)
SID=C (N/S)Sy=s x==U/g (4b)

In eqn. 44, g is the differential gain factor and y the relative
gain compression. { is the spontaneous-to-stimulated rate
ratio. When 7 = 0, the parameters g and s are constant above
threshold and the reciprocal of [ is the ratio of injected
current to threshold current minus one. When y >0, the
carrier number N slowly increases above threshold and the
parameters g, s may vary slightly.

The SRE, eqn. 1, and the corpuscular rate equations, eqn. 2,
lead, respectively, to the following expressions for the photonic

noise spectral density S, relative to the shot-noise level D

D 1%y =1 420+ (1 + pp)?
D'\ P =14 A + 22 — yx — A + 07

(SRE) (5)
(exact) (6)

These two expressions coincide for linear gain (y = 0) as stated
earlier. If the injected current is much larger than the thresh-
old current the { and y parameters vanish and photonic noise
reduces to the shot-noise level from either formulation.
However in general they obviously do not agree.

For long wavelength lasers the recombination rate is domi-
nated by Auger effects and s = 3. If the differential gain factor
g is taken as unity, x = 3{. As long as the rate compression
factor 7 is small compared with unity, the error made in using
SREs remains small. But y values comparable with unity have
been considered recently, in which case the error made in
using SREs may be large.

Rather large gain compression factors have been measured
for quantum wells.® For existing lasers y may be of the order
of 0-05. Larger y values would occur if the refractive index
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step and the mirror reflectivities were made larger, because the
optical field in the active layer would in that case be enhanced
for a given output power. The exact mechanism for nonlinear
gain and the numerical values of y are not yet well established.
Measured values of low-frequency photonic noise are larger
than expected because of the perturbating effect of side-
modes.®

To exemplify the difference between the theoretical results
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Fig. 2 Variation of photonic noise (double-sided) spectral density rela-
tive to shot-noise level D as function of spontaneous to stimulated rates
ratio {
Three values of relative gain compression 7 are considered: y =0
(linear gain), y = 0-1 and y = 0-9
exact from egn. 2
- — —— standard rate equations eqn. 1

in eqns. 5 and 6 the photonic spectral density is represented in
Fig. 2 as a function of spontaneous-to-stimulated rates ratio ¢
for y = 0 (linear gain), y =01 and y =0-9. It is remarkable
that the corpuscular (or circuit) theory presented in this Letter
predicts that photonic noise may be reduced below the shot-
noise level by nonlinear gain. This may occur for any 7y value
provided g/s and { are small enough.
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