INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) L473-LA477 _ PII: S0305-4470(01)26009-0

LETTER TO THE EDITOR

Photon number variance in isolated cavities

Fabrice Philippe'? and Jacques Arnaud’

! LIRMM, 16 rue Ada, 34392 Montpellier, France
% Université Paul Valéry. Route de Mende, 34199 Montpellier Cedex 5. France
* Mas Liron, 30440 Saini-Martial, France

E-mail: Fabrice Philippe @univ-montp3.fr

Received 25 May 2001
Published 10 August 2001
Online at stacks.iop.org/JPhysA/34/L473

Abstract

We consider a strictly isolated single-mode optical cavity resonating at angular
frequency, w, containing atoms whose one-electron level energies are supposed
to be fiw, 2he . . . Bhe, and m photons. If the atoms are initially in their highest
energy state and m = 0, we find that at equilibrium: variance(m)/mean(m) =
(B + 1)/6, indicating that the internal field statistics is sub-Poissonian if the
number of atomic levels B does not exceed 4. Remarkably, this result does not
depend on the number of atoms, nor on the number of electrons that each atom
incorporates. Our result has application to the statistics of the light emitted by
pulsed lasers and nuclear magnetic resonance. On the mathematical side, the
result is based on the restricted partitions of integers.

PACS numbers: 42.50.Ar, 42.60.Da, 42.50.-p

1. Introduction

We consider a single-mode optical cavity containing identical atoms. The number of photons
in the cavity, denoted by m, may be measured at any time t: It suffices in principle to quickly
remove the atoms at that time and introduce an ideal light detector. The photo-count tells us how
many photons were present in the cavity at the time considered. By performing measurements
on a large number of similarly prepared cavities, the probability P(m, ) that some m-value be
found at time r is evaluated. We are particularly interested in the so-called Fano factor, defined
forexamplein [1]: F(¢) = variance(in)/mean(m). In the course of time, the system eventually
reaches a state of equilibrium, in which case P(m, t) and F(t) are time-independent.

[f the system is in a state of thermal equilibrium, the photon statistics is, as is well known,
that of Bose-Einstein. In that case, the Fano factor is equal to mean(m) + 1. This situation
occurs when the cavity may exchange energy with a thermal bath (canonical ensemble). This
would also be the case for the strictly isolated cavities (micro-canonical ensemble) considered
in the present paper if the response of the atoms to the field were linear. But in general
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the atomic response is nonlinear and the photon distribution does not follow Bose-Einstein
statistics.

This may be seen from a simple example. Consider an isolated single-mode cavity
resonating at angular frequency w and containing two identical (but distinguishable) resonant
two-level atoms. The atomic ground-state energy is taken as equal to 0 and the upper-level
energy as equal to fiw = 1. for brevity. If, initially, the two atoms are in their upper state
and the cavity does not contain any photons, i.e., m(0) = 0, the total matter + field energy
U = 2. Part of the atomic energy gets converted into photons in the course of time. The
fundamental law of statistical mechanics tells us that, once a state of equilibrium has been
reached, all the microstates of the isolated system presently considered are equally likely
to occur. The complete list of microstates (first-atom state, second-atom state, number of
photons) reads: (1, 1, 0), (0, 1, 1), (1, 0, 1) and (0. 0, 2). It follows from this list that the
probabilities of having zero, one and two photons are proportional to 1, 2 and 1, respectively.
This is obviously a non-thermal distribution. In that example, the Fano factor defined above
is F = 1/2. But the mean value of m is equal to 1, so that the Bose—Einstein distribution
would instead give F = 2. Sets of microstates may be obtained similarly for total-energy
values U = 0,1.2,3.... When the cavity is in contact with a bath at temperature 7', the
probability that the total energy be U is given by the Boltzmann probability law exp(—U/T).
The end result for the photon statistics is of course Bose—Einstein. Only isolated cavities
with a particular value of the total energy U are presently considered. It is straightforward
to generalize the two two-level atoms result to any number M of distinguishable two-level
atoms. We find that F remains equal to 1/2. This is a special case (B = 2) of the general
result to be derived in the present paper. The Bose-Einstein statistics would, in that case, give
F=1+M/2.

The Fano factor has been evaluated in many papers dealing with laser light, for
example [1,2]. In lasers. the atoms are driven to their excited state by a pump, and the cavity
suffers from some optical loss, perhaps as a result of light transmission through partially
reflecting mirrors. It could be thought at first that the Fano factor of isolated cavities obtains
from the laser theory result by letting the pumping rate J as well as the optical loss & go to
zero. This is not the case, however, because in the laser system the total (atom + field) energy
U in the cavity may drift slowly, no matter how small J and o are. It follows that the variance
of m deduced from laser theories in that limit does not coincide with the present statistical
mechanical result, applicable to strictly isolated systems, even if the average value of U is
the same in both cases. This point has been discussed in detail in [3]. Further conceptual
details can be found in [4]. The present theory is nevertheless of practical significance.
It is applicable to pulsed rather than continuous electromagnetic generators, as we later
discuss.

To summarize, if initially m = 0 and the piece of matter is in its highest energy state, m at
some later time represents the energy subtracted from the piece of matter. The probability that
some m value occurs is proportional to the matter statistical weight (number of distinguishable
configurations) W,, according to the equal-weight principle of statistical mechanics. We
therefore need only consider the statistical weight of the atomic collection. We will consider
first the case of a single atom with level energies 1, 2, .... B, and subsequently any number,
M, of B-level atoms. Finally, we consider for the sake of illustration a radio-frequency cavity
containing M bismuth nuclei (spin 9/2) immersed in a magnetic field. Our general result gives
in that case a Fano factor equal to 11 /6.

Our simple and general expression for the Fano factor derives from a property of the
number of restricted partitions of integers.
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2. One B-level atom

Consider an atom whose one-electron level energies are 1,2, ..., B, with N < B single-spin
electrons. According to the Pauli exclusion principle each level may be occupied by zero or
one electrons. The atom energy is greatest when the N electrons occupy the upper states. For
some subtracted energy m the statistical weight W,, is the number p(N, m) of partitions of m
into at most N parts, none of which exceed B — N. This conclusion is reached by shifting
electrons downward beginning with the bottom one until the specified energy m is subtracted.
Let us recall that a partition of m is a non-increasing sequence of positive integers summing
up to m. By convention the number of partitions of 0 is 1. It is known [5] that

B—N 1 _qN-ﬂ'
= ; P 1
8(q) ;MN m)q E —g (1

If the moments of m with respect to the statistical weight W,, are defined as
Ln=0,12,.. M PN, m)

" 2om=012,. PN, m) @
we have, as is well known [6]

mean(m) =m = h'(1) (3)

variance(m) = m? —m* = h"(1) + h'(1) 4

where h(g) = In[g(g)] and primes (double primes) denote first (second) derivatives with
respect to the argument.

Since
In (%:—l) =In (] + -Ti) - %(q - 1)+ %{N+2i —6)(g — 1y* +0((g — DY (3)
we obtain after summation over 7 from 1 to B — N
mean(m) = h'(1) = %N(B —N) (6)
variance(m) = h"(1) + h'(1) = 5N(B = N)}(B + 1) )

variance(m) B +1

mean(m) 6 @
For example, if B = 4, N = 2, direct examination shows that p(2.m) = 1ifm =0,1,3. 4
and p(2, 2) = 2. Therefore, mean(m) = 2 and variance(m) = 10/6 in agreement with (8). If
the equilibrium field is allowed to radiate into free space the statistics of the emitted photons
is sub-Poissonian (variance less than the mean) when B < 5 and super-Poissonian (variance
exceeding the mean) when B > 5. The result in (8) was given in [4] without a proof,

3. Any number of B-level atoms

Let the cavity now contain a collection of M atoms labelledbyk = 1,2, ..., M, with N® < B
electrons in atom k. These atoms are supposed to be distinguishable and to be coupled to one
another only through energy exchanges with the cavity field.

The photon number m represents the energy subtracted from the atomic collection. The
atomic statistical weight W, is the sum, for all values of m,, m>, ... summing up to m, of the
products of the individual statistical weights defined above:

W,, = > pWO m)p(N® . my) ... p(NM myy). )

Mtite-+m gy =m
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The moments of m may therefore be calculated as

= Sy +ma+ -+ my)" PN m)p(N®, my) ... p(N'™, mur)
i S (N, m)p(N@, ma) ... pN m)

where the summation is over all non-negative values of mj, ma, ... Mp- It follows that the
mean value of m is the sum of the individual atoms means, and that the variance of m is the
sum of the individual atoms variances.

For the B-level atoms considered here, the result (6) gives

(10)

M k) k

iy N& (B —N®
mean(m) = Z mean'®’ = Z ( = ) (11)

k=1 k=1 =
and from (7)
M M k) (k)
N® (B — N¥)YB+1)

variance(m) = Y  variance™ = . (12

Therefore, the simple result in (8) holds for any collection of B-level atoms.

4. Application to nuclear magnetic resonance

Asis well known, a spin 1/2 charged particle such asan electron immersed in a magnetic field
behaves in the same manner as a (one-electron) two-level atom. This analogy generalizes to
spin-s particles. We may therefore consider, as an example of the application of the previous
expressions, an electro-magnetic cavity containing M identical spin-s charged particles. These
particles may be distinguished from one another by their locations. If these particles are
submitted to a magnetic field of appropriate strength, and in appropriate energy units, the
energy levels are —s, =5 + 1t ¢. In a cold environment only the lowest energy levels are
populated. But il suffices to apply the so-called 7 -radio-frequency pulse to get the highest
Jevels populated. Our previous result: variance(m)/mean(m) = (B+1)/6 = (s+1)/3 applies
once a state of equilibrium between the particles and the field has been reached. It is here
supposed that the nuclei natural relaxation time is much longer than the time required for the
particle-field equilibrium to be attained. If the field is allowed to radiate into free space, the
emitted electro-magnetic pulse is Poissonian (variance(m) = mean(m)) for spin-2 particles.

Bismuth nuclei were found by Black and Goudsmit in 1927 to have a maximum spin
s = 9/2 [7]. It follows that in the presence of a magnetic field these nuclei exhibit
B = 2s+1 = 10evenly spaced energy levels. When located in a radio-frequency cavity (whose
resonating frequency should be in the 100 MHz range for usual magnetic-field strengths), the
equilibrinm Fano factor reads according to our theory F = (B + 1)/6 = 11/6. Due to their
small energy, radio-frequency photons may be counted only at very low temperatures. It is
also at such low temperatures that long nuclei relaxation times may Occur.

The authors wish to express their thanks to L Chusseau and D Scalbert for critical readings of
the manuscript.
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