PULSE BROADENING IN MULTIMODE GRADED-INDEX FIBRES

Indexing terms: Fibre optics, Optical waveguides

A closed-form expression is obtained for pulse broadening in graded-index fibres with $k^2(r) = 1 - r^2 + \epsilon_2 r^4 + \dots + \epsilon_n r^{2n}$. Pulse broadening for $k^2(r) = 1 - r^2 + 0 \cdot 615r^4 + 70r^6$ and $r < 0 \cdot 1$ is 12 times smaller than for square-law fibres if material dispersion is neglected.

When material dispersion can be neglected, the broadening of optical pulses propagating in multimode graded-indexfibres can be evaluated by comparing the optical lengths of rays excited by the source. Recently, Steiner¹ gave a solution based on a vector differential equation for the ray trajectory. The approach proposed in this letter is based on a simpler scalar equation. A closed-form solution is obtained for small, but arbitrary, deviations from a square-law profile.

The Hamilton equations for light rays x(z), y(z) in an isotropic z-invariant medium with wavenumber k(x, y) are

$$dx/dz = k_x/k_z$$

$$dy/dz = k_y/k_z$$

$$dk_x/dz = (1/2k_z)\partial k^2/\partial x$$

$$dk_y/dz = (1/2k_z)\partial k^2/\partial y$$
(1)

The ratio of the time of flight along a ray to the corresponding time along the axis is²

$$T = (k_0/k_z)\langle \partial k^2/\partial \omega^2 \rangle/(dk_0^2/d\omega^2) \quad . \quad . \quad . \quad . \quad (2a)$$

where $k_0 \equiv k(0, 0)$ and $\langle \ \rangle$ denotes an average over a ray period. When material dispersion can be neglected, eqn. 2a reduces to

The axial component k_z of k is a constant of motion. From eqns. 1, we obtain

$$\frac{1}{2}k_z^2 d^2(X+Y)/dz^2 = k^2 - k_z^2 + X\partial k^2/\partial X + Y\partial k^2/\partial Y \quad . \tag{3}$$

where $X \equiv x^2$, $Y \equiv y^2$. If we integrate eqn. 3 over a ray period, the l.h.s. vanishes because d(X+Y)dz assumes the same value at the limits of integration. Further, if we assume that k^2 is equal to k_0^2 plus a homogeneous function of degree α in X and Y, we have

In that case, a simple and exact expression for T is obtained:

Our result, eqn. 5, agrees with that given in Reference 3 for the special case

$$k^2 = 1 - (X + Y)^{\alpha} \equiv 1 - R^{\alpha}$$

where $R \equiv x^2 + y^2 \equiv r^2$.

Let us now consider a square-law medium ($\alpha = 1$)

$$k^2 = 1 - R$$
 (6)

The ray equation is easily solved. We obtain

$$R = \frac{1}{2}A(1+\theta) + \frac{1}{2}A(1-\theta)\cos(2z/k_z) (7)$$

where A denotes the square of the maximum radius of the ray and $\theta \equiv (L_z/A)^2$, where $L_z = xk_y - yk_x$ denotes the axial component of the ray angular momentum (the second constant of motion). For meridional rays, we have $\theta = 0$, and, for helical rays, $\theta = 1$. For later use, let us evaluate $\langle R^n \rangle$. Using the binomial expansion and the result

$$\langle \cos^m \rangle = m! 2^{-m} \{ (m/2)! \}^{-2} \dots \dots \dots (8)$$

for even m, $\langle \cos^m \rangle = 0$ for odd m, we obtain

$$\langle R^n \rangle = n! 2^{-n} A^n \sum_{m=0, 2}^n \frac{(1+\theta)^{n-m} (1-\theta)^m}{2^m (n-m)! \{(m/2)!\}^2}$$
 (9a)

In particular,

$$\langle R^2 \rangle = A^2 (3\theta^2 + 2\theta + 3)/8$$

 $\langle R^3 \rangle = A^3 (1+\theta)(5\theta^2 - 2\theta + 5)/16$. . . (9b)

Let us now consider a perturbed square-law profile

$$k^2 = 1 - R + \sum_{n=2}^{N} \varepsilon_n R^n$$
 (10)

where the $\varepsilon_n R^{n-1}$ are of order ε . For circularly symmetric fibres, eqn. 3 becomes, after integration over a ray period,

$$0 = \langle k^2 - k_z^2 + R \partial k^2 / \partial R \rangle \quad . \quad . \quad . \quad . \quad . \quad . \quad (11)$$

Substituting eqn. 10 in eqn. 11, we obtain, for T in eqn. 2b,

$$T = \frac{1}{2}k_z^{-1}\{k_z^2 + 1 + \sum_{n=2}^{N} (1 - n)\varepsilon_n \langle R^n \rangle\} \quad . \quad . \quad (12)$$

Eqn. 12 is exact. To 1st-order in ε , the zeroth-order approximation, eqn. 7, for R can be used in eqn. 12 and k_z can be expressed in terms of A and θ :

$$k_z^2 = 1 - A(1+\theta)$$
 (13)

Thus eqns. 9, 13 and 12 give a closed-form expression for the time of flight T of a pulse for any small deviation from a square-law profile.

Let the pulse broadening τ be defined as the maximum variation of T for $0 < \theta < 1$ and $0 < A < A_0$. For the square-law fibre in eqn. 6, we obtain $\tau = 0.5A_0^2 = 20 \times 10^{-7}$ if $A_0 = 0.002$. For $k^2 = 1 - R + \varepsilon_2 R^2$, we find that T = 1 for meridional rays $(\theta = 0)$ when $\varepsilon_2 = 2/3$, in agreement with

Fig. 1 Variation of pulse broadening in fibre with $k^2=1-r^2+\varepsilon_2\,r^4$ as function of ray axial angular momentum L_z for various values of coefficient ε_2

 $\theta = 0$ corresponds to meridional rays and $\theta = 1$ to helical rays

Reference 4, and T=1 for helical rays $(\theta=1)$ when $\varepsilon_2=1$, in agreement with Reference 5. The variation of T with θ for various values of ε is illustrated in Fig. 1. The minimum τ is obtained when $\varepsilon_2 = 0.91$. Then $\tau = 0.046A_0^2 = 1.84 \times 10^{-7}$ if $A_0 = 0.002$. The improvement over the square-law profile is therefore as large as 11. Note that τ/A_0^2 deviates slightly from a constant if A_0 is not small compared with unity. The broken line in Fig. 1 for $A_0 = 0.05$ (corresponding to a total variation of refractive index of 2.5%) deviates slightly from the plain line, obtained for $A_0 \leq 0.01$. For $k^2 = 1 - R +$ $\varepsilon_2 R^2 + \varepsilon_3 R^3$, and $A_0 = 0.002$, the minimum τ is found for $\varepsilon_2 = 0.615$ and $\varepsilon_3 = 70$: it is equal to 1.62×10^{-7} . The improvement, compared with the case where $\varepsilon_3 = 0$, is therefore rather modest. It is interesting, however, that the optimum ε_2 is so sensitive to the choice of ε_3 . It is conceivable that the absolute minimum of τ would be obtained for a strongly oscillating, ill-behaved, variation of k^2 with r. If this were the case, higher-order terms should be considered before a final conclusion can be reached concerning the optimum profile of a graded-index fibre. The method proposed in this work can also be used to investigate more complicated nearsquare-law fibres, such as the helical fibre 6 with $k^2 = 1 + 1$ $x^2 - y^2 + \dots$ in a rotating co-ordinate system.

Pulse broadening in square-law and linear-law fibres that have material dispersion is given in Reference 2. More generally, we may have

$$k^{2}(r) = k_{0}^{2} - k_{1}^{2} R + \sum_{n=2}^{N} k_{n}^{2} R^{n}$$
 (14)

Proceeding as before, we obtain, for the pulse broadening,

$$T = (k_0/k_z) \left\{ 1 - \frac{1}{2} (1 - k_z^2/k_0^2) D_1 \right\}$$

$$+\sum_{n=2}^{N} \left[D_n - \frac{1}{2} (n+1) D_1 \right] \varepsilon_n \langle R^n \rangle$$
 (15)

where we have defined the dispersion factors

$$D_n = (k_0^2 dk_n^2/d\omega^2)/(k_n^2 dk_0^2/d\omega^2) \quad . \quad . \quad . \quad (16)$$

that are unity in the absence of dispersion, $\varepsilon_n \equiv k_n^2/k_0^2$, and $\langle R^n \rangle$ is given in eqn. 9 with $\theta = (L_z/k_1 A)^2$. Thus a closedform solution for pulse broadening in dispersive fibres that have small, but otherwise arbitrary, deviations from the

square-law has been obtained.

J. A. ARNAUD

28th November 1974

Bell Laboratories Inc. Crawford Hill Laboratory Holmdel, NJ 07733, USA

References

1 STEINER, K. H.: Nachrichtentech. Z., 1974, 27, p. 250
2 ARNAUD, J. A.: Bell Syst. Tech. J., 1974, 53, p. 1599
3 GLOGE, D., and MARCATILI, E. A. J.: ibid., 1973, 52, p. 1563
4 LUNEBURG, R. K.: 'Mathematical theory of optics' (University of California Press, Berkely, 1964), p. 180
5 KAWAKAMI, S., and NISHIZAWA, J.: IEEE Trans., 1968, MTT-16, p. 814
6 ARNAUD, J. A.: Anal. Ont., 1972, 11, p. 2514

6 ARNAUD, J. A.: Appl. Opt., 1972, 11, p. 2514