PULSE BROADENING IN MULTIMODE
GRADED-INDEX FIBRES

Indexing terms: Fibre optics, Optical waveguides

A closed-form expression is obtained for pulse broadening in
graded-index fibres with K3r) = |l —r24e,r*+ ... +gr? .
Pulse broadening for k3(r) = l—r2+0:615-*+70r% and
r < 0+1 is 12 times smaller than for square-law fibres if
material dispersion is neglected.

When material dispersion can be neglected, the broadening
of optical pulses propagating in multimode graded-index:
fibres can be evaluated by comparing the optical lengths of
rays excited by the source. Recently, Steiner! gave a solution
based on a vector differential equation for the ray trajectory.
The approach proposed in this letter is based on a simpler
scalar equation. A closed-form solution is obtained for small,
but arbitrary, deviations from a square-law profile.

The Hamilton equations for light rays x(z), y(z) in an,
isotropic z-invariant medium with wavenumber k(x, y) are* |

dxldz = kelk.
dyldz = k,/k. 1
dk,Jdz = (1/2k.)0k?/0x f
dkyfdz = (1/2k.)ok*|dy
The ratio of the time of flight along a ray to the éorresponding
time along the axis is?
T = (kofk){0k* [0 [(dko*fded®) . . . . (2a)
where ko = k(0, 0) and ¢ > denotes an average over a ray

period. When material dispersion can be neglected, eqn. 2a
reduces to

T =Ck*koks) . . . . . . . . . (@Y

The axial component k. of k& is a constant of motion. From
eqns. 1, we obtain

Y2 d*(X 4+ Y)[dz? = k2 — k2 + X0k [0X + YOK*OY . (3)

(€))

where X = x?, Y = y* If we integrate eqn. 3 over a ray
period, the lh.s. vanishes because d{X + Y)dz assumes the
same value at the limits of integration. Further, if we assume
that &2 is equal to ko® plus a homogeneous function of degree
« in X and Y, we have

XOR*OX+ YOK*0Y = a(k*=ke®) . . . . (4
In that case, a simple and exact expression for T is obtained:
T = {(kfko) +alko/k)} (1 +2) . . . . . (5)

Our result, eqn. 5, agrees with that given in Reference 3 for
the special case

B=1-(X+Y)X=1-R*

where R = x2+y? =12,
Let us now consider a square-law medium (« = 1)

k*=1-R . . . . . . . < . . . (®
The ray equation is easily solved. We obtain
R=3A(0+OH+3A(1—-cos 2z/k) . . . . (D

where A4 denotes the square of the maximum radius of the ray
and @ = (L./A)?, where L.= xk,—yk, denotes the axial
component of the ray angular momentum (the second con-
stant of motion). For meridional rays, we have 8 = 0, and,
for helical rays, # = 1, For later use, let us evaluate CR">.
Using the binomial expansion and the result

Cos™ = mi2=™{(m/2)}=2 . . . . . . (8)
for even m, (cos™ = 0 for odd m, we obtain
ul (1+&)y-m(1—-g)m

R™ = nl2-n 4n
R = n A D (9a)
In particular,
{R*» = A*(30*+20+3)/8
(96)
(R = A3(1+6)(56% =20+ 5)16

Let us now consider a perturbed square-law profile

N
kE*=1-R+ X &R . . . . . . . .10

n=2
e

where the g, R"™" are of order &. For circularly symmatric
fibres, eqn. 3 becomes, after integration over a ray period,

0=<k2—kA+ROKORY . . . . . . . (D

Substituting egn. 10 in eqn. 11, we obtain, for T in eqn. 25,
. N

T =4k, k2+1+ 3 (1-medR™Y . . . (12)
n=2

Eqn. 12 is exact. To Ist-order in ¢, the zeroth-order approxi-
mation, eqn. 7, for R can be used in eqn. 12 and k. can be
expressed in terms of A and 6:

kr=1-A0+8 . . . . . . . . (13

Thus eqns. 9, 13 and 12 give a closed-form expression for the
time of flight T of a pulse for any small deviation from a
square-law profile.

Let the pulse broadening r be defined as the maximum
variation of T for 0 <6< 1 and 0< 4 < Ay. For the
square-law fibre in egn. 6, we obtain 7 = 0-54,%* = 20x 10~7
if Ao =0-002. For k* = 1—R+e¢; R? we find that T = 1
for meridional rays (6 = 0) when &, = 2/3, in agreement with
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Fig. 1 Variation of pulse broadening in fibre with k* = 1 —

r*4eyr* as function of ray axial angulfar momentum L. for
various values of coefficient &,
8 = 0 corresponds to meridional rays and 8 = | to helical rays

Reference 4, and T = 1 for helical rays (8 = 1) when ¢, = 1,
in agreement with Reference 5. The variation of T with & for
various values of ¢ is illustrated in Fig. 1. The minimum 7t is
obtained when ¢, = 0-91. Then v = 0.04640> = 1-84x10-7
if 4o = 0-002. The improvement over the square-law profile
is therefore as large as 11. Note that 7/4,* deviates slightly
from a constant if 4, is not small compared with unity. The
broken line in Fig. 1 for Ao = 0-05 (corresponding to a total
variation of refractive index of 2.5%) deviates slightly from
the plain line, obtained for 4, < 0-01. For k? = 1—R+
& R*+e; R?, and A, = 0.002, the minimum r is found for
g, = 0:615 and ¢; = 70: it is equal to 1.62x10~%. The
improvement, compared with the case where &; = 0, is there-
fore rather modest. It is interesting, however, that the
optimum ¢; is so sensitive to the choice of e5. It is conceivable
that the absolute minimum of t would be obtained for a
strongly oscillating, ill-behaved, variation of £? with r. If this
were the case, higher-order terms should be considered before
a final conclusion can be reached concerning the optimum
profile of a graded-index fibre. The method proposed in this
work can also be used to investigate more complicated near-
square-law fibres, such as the helical fibre® with &% = 1+
x*—y%4 ... in a rotating co-ordinate system.

Pulse broadening in square-law and linear-law fibres that
have material dispersion is given in Reference 2. More
generally, we may have

N
) =ko’—k*R+ 3 k2R . . . . . (14)

n=2
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Proceeding as before, we obtain, for the pulse broadening,

T = fkm’k:){] “'}(l -k_.z,l’k.a;.sz,

+ }E [Dn—%(n*-l}DlIEn(R")) (15)
n=2

where we have defined the dispersion factors
D, = (ko* dk.[dw?)/ (k2 dko*ldw?)y . . . . (16)

that are unity in the absence of dispersion, ¢, = k,2/ks?, and
“R"> is given in eqn. 9 with § = (L./k, A)%. Thus a closed-
form solution for pulse broadening in dispersive fibres that
have small. but otherwise arbitrary, deviations from the

square-law has been obtained.
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