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Optimum profiles for dispersive
multimode fibres
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A simple closed-form expression is given for the index profile of multimode fibres with arbitrary
dispersion providing transmission capacities as large as 1.6/A% Mbit/s km, where A = An/n. Our result
reduces to a previous result of Marcatili for the special case of circularly symmetric fibres. A trans-
mission capacity of 150 Mbit/s over a 10 km long fibre appears possible with LED sources operating
at optimum wavelengths for the medium.

1. Introduction

Glass fibres constitute almost ideal media for the guided transmission of information. Losses below

0.5 dB/km have been reported [1] that indicate the possibility of repeater spacings as large as 50 km.
For large repeater spacings, the broadening of optical pulses as they propagate along the fibre is import-
ant, even at low or moderate data rates. The transmission capacity of systems consisting of single-mode
fibres and quasi-monochromatic sources is limited only by the speed at which the source can be modu-
lated and at which pulses can be detected. A number of practical considerations (life-time of the source,
ease of cabling and splicing etc.) suggest, however, that multimode fibres are more practical than mono-
mode fibres. We shall investigate the design of optimum multimode fibres excited by multimode sources,
under the assumption that the fibre material is linear, isotropic and time invariant, using the method of
ray optics. No assumption is made concemning the dispersion of the material. Ray optics methods are
applicable to carefully fabricated multimode fibres. Specifically, large or fast variations of refractive
index in the fibre cross-section are assumed not to be present, and mode coupling effects due to irregu-
larities or cabling to be negligible. General concepts in optical pulse propagation are discussed in Section
2 and orders of magnitude of the effects are given. Simple analytical results based on the equalization of
helical rays are derived in Section 3. We show how to determine optimum profiles and optimum mater-
ials. More general results, applicable to non-helical rays and non-circularly symmetric profiles, are derived
in Section 4.

2. General results
We shall recall in this section fundamental concepts of optical pulse propagation. Consider a time-
harmonic, plane, optical wave propagating in a homogeneous material. The distance between adjacent
nodes of the wave field at a fixed time is the wavelength A. We define the wavevector k as a vector
perpendicular to the wavefronts having magnitude k = 27/A (wavenumber). The time elapsed between
successive nodes of the wavefield at a fixed point is the period 7. We define the angular frequency
w = 2m/T. Wave numbers and angular frequencies are fundamental quantities. Derived quantities, such
as the refractive index n = k/(w/c) or the free-space wavelength A, = 2me/w(c = 3 x 10® m/s), however,
are sometimes convenient.

We shall assume in the following that the medium is isotropic. The wavenumber is independent of
direction and the rays have the direction of the wave vector k. If the medium is inhomogeneous, the
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rays are curved. The phase shift ¢ suffered by the wave field along a ray is obtained by integrating k ds
along the ray, where ds denotes the elementary ray length. If the wave is modulated by a pulse, the
transit time ¢ of the pulse along the ray is obtained by specifying that the phase is stationary: £ = 0¢/dc.
(In principle ¢(w) and ¢(w + dw) are evaluated along two distinct ray trajectories. Fermat’s principle,
however, permits us to evaluate both quantities along the ray trajectory at w.) Alternatively, ¢ can be
expressed as the integral of ds/u along the ray, where u = 9w/9k denotes the local group velocity. In the
absence of dispersion we have dw/dk = w/k = vand ¢ = ¢/w. The local group velocity u equals the local
phase velocity v. If the ratio 9/u is a constant, perhaps different from unity, times of flight are propor-
tional to phase shifts. In that special case, equalization of the phase shifts for different ray paths entails
time of flight equalization. The ration #/u usually varies spatially in a complicated manner. Such a
medium with variable v/u ratio is said to suffer from inhomogeneous dispersion. This turns out to be a
very important effect in fibre optics,

Let the previous definitions be applied to uniform optical fibres, with axial coordinate z and trans-
verse coordinates x, y. The transit time f per unit length of a pulse is usually a function of the initial
position x, y, of the pulse, its initial direction, characterized by the transverse components k,, k,, of the
wavevector, and the carrier angular frequency w. For clarity, we shall omit the dependence of 7 on the
coordinates x, p and combine the rectangular components k., k, into a transverse component
ki = (k% + k3)''?. The symmetry of the fibre implies that 7 depends only on the square of k. Thus 7 is a
function of k7 and w. The maximum value that k¥ can attain is proportional to the relative change of
index A= An/n in the fibre cross section. Indeed, a wave can be trapped within the fibre core only if
the axial component k. of the wavevector (propagation constant) is larger than the cladding wave-
number k.. We have

5 )max = k8 — (k2)min = k3 — K2 (1a)
A = 3k} — k)G ~ (no —ne)no. (1b)

The maximum variation Az of the time of flight can consequently be written in the form of a power
series in A and f, where fdenotes the departure of the optical frequency from some reference frequency.
The terms exhibited in the series

and

At = aA+bA?* +of +df? +efA @)

are sufficient to discuss the most important effects. The coefficients a, b, ¢, d, e, in Equation 2 are deter-
mined by the wavenumber distribution k(x, ¥, w) of the fibre in a manner that will be discussed in
subsequent sections.

Let us consider quasi-monochromatic sources and set f= 0. The dominant term in Equation 2 is a.\.
For a step-index fibre, for example, we have

At (ns/km) = 5000A. 3)

The numerical factor 5000 in Equation 3 represents the time of flight of axial pulses for typical materials
(axial group velocity = 3x 10%/1.5, m/s). We shall prove in Section 3 that it is always possible to find
index profiles such that the term a Avanishes. We are then left with the term b A. Numerically, this quad-
ratic termis

At (ns/km) = (5000/8)A>. 4)

Some sources, particularly light-emitting diodes (LEDs), have a nonzero linewidth. For clarity we shall
first consider the effect for axial rays, i.e. when A = 0. The dominant term in Equation 3 is then cf, a
term often referred to as the material dispersion effect. At optical frequencies of the order of 250
terahertz (free-space wavelength ~ 1.2 um), however, the term ¢f vanishes and the dominant term
becomes df*. Measurements on bulk samples [2] show that the coefficient d is almost the same for all
materials. We have
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At (ns/km) ~ 0.0016f2 (5)

where f'is expressed in terahertz. (1 terahertz = 1000 gigahertz.)

The last term ef Ain Equation 2 exists because index profiles that are optimum at one particular
frequency are not necessarily optimum at neighbouring frequencies. For LED sources and most dopants
(particular phosphoric oxide) the term ef A is, however, negligible compared with the term df2. For
phosphor oxide, Ao = 1.27 um and A= 0.01 the term ef'Ais significant only when f < 0.2 terahertz. In
any event, the term ef'A can usually be eliminated, as we shall see, if two dopant materials are used.
Elimination of the term ef A provides a degree of freedom concerning the operating frequency. It also
allows the transmission capacity of the fibre to be increased by frequency multiplexing.

In the above discussion, we considered only the maximum possible variation of the time of flight.
The transmission capacity of a fibre is more intimately related to its impulse response P(t). To evaluate
P(t) we need to know the distribution of the pulses emitted by the source in position, direction and
angular frequency.

The source is represented in general by some distribution f(x, y, ¢, k., k,.w)at the input plane of
the fibre. A well known theorem asserts that the distribution f does not vary along ray trajectories if the
loss is uniform. (This theorem is equivalent to saying that the determinant of paraxial ray matrices is
unity, a result established by Luneburg in 1944. It is sometimes referred to as Liouville’s theorem.)
When both the distribution f and the time of flight 7 are known, the impulse response P(z) can be ob-
tained by integration. The data-transmission capacity of the system is approximately given by

T = 1/(40) (6a)

where g denotes the r.m.s. impulse response width

0= (-2 (@ = J‘jwaP(_t)df (6b)

and the integral of P(f) over time is assumed to be unity.
Let us assume that the source distribution f'is independent of k,, k,, (Lambertian source). indepen-
dent of x, y within the fibre-core cross section, and has a Gaussian power spectrum of r.m.s. width f

P(w) = exp {= [(w— wo)/2af]*}. (7a)
On the basis of the previous discussion one can show that the r.m.s. impulse response width of a multi-
mode fibre can be reduced to

o (ns/km) = {[150A%]2 + [0.0018/>(terahertz)]?}'/? (7b)

if we are free to select the radial variation of two dopant materials and the central frequency of the
source.

For a typical fibre, A =~ 0.01. For a typical light emitting diode, f~ 9 terahertz. Thus, according to
Equation 7, 0~ 150 ps/km. The maximum transmission capacity is therefore, Equation 6a, about 150
Mbit/s over a 10 km length.

3. Helical rays in circularly symmetric fibres
A wealth of information can be simply obtained by comparing the times of flight of pulses on helical
rays, that is, on rays having a constant radius. It turns out that, for all practical purposes, it is sufficient
to minimize the variation of ¢ for helical rays.

The ratio of the axial length dz and ray length ds is given by [3]

(dz/ds)> = 1+ (r/k) ok/or. (8)
The time of flight per unit length is therefore
tr,w) = [1+ (r/k)0k/ar)] 2 (0k/dw). 9)

Because k varies with r and w, the time of flight ¢ is, in general, a function of rand c.
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We shall investigate whether the following conditions
(1)r = tp, at some w
(2)t = 1y and 8t/dw = Bty/dw
(3)1 = toand dt/ow = Oty/ow = 0
optimizing the transmission capacity of the fibre for various sources of interest can be satisfied. In the
above expressions, fo(w) = (0, w) denotes the time of flight of pulses propagating along the fibre axis.

3.1. Quasi-monochromatic sources

If the source is quasi-monochromatic, we seek to maintain the time of flight ¢ as constant when the
radius r of the helical path varies from zero (fibre axis) to the core radius a, the angular frequency
w being kept a constant: ¢ = t,. This condition is, from Equation 9

rokfor = k{[(9k/dw)(dko/dw)]® — 1}. (10)

For any one-parameter class of material, the r.h.s. side of Equation 10 is a known function of k. Indeed,
the dispersion drn/d\g and the refractive index n can be measured for various concentrations of the
doping material considered, for example germanium oxide, at some given optical frequency. On the basis
of these measurements, we can plot dn/dhg as a function of n, the dopant concentration playing the role
of a parameter. We choose to consider dn/d)g a function of n, or, equivalently, dk/dcw (the partial deriva-
tive of k with respect to w at a fixed radius or dopant concentration) a function of k. The material on
axis has been selected beforehand. The solution of Equation 10 is straightforward. The dependence of r
on k must be

ria = exp [— J;: l — [(0k/Dw)/(dko/dw)]? " di/k (11)

where we have introduced the cladding wavenumber k. = (w/c)n, from the conditions r = 0 when
k = kpand r = @ when k = k.. An equivalent form of Equation 11 is

(rfa)® = exp J:: [2N—N?—N] ™' dNV (12)

where we have defined relative phase and dispersion indices
N = 1K'k} (13a)
N = 1 — (0k?/dw)/(0k3/0w), (13b)

which are more closely related to the index profile than k and 9k/w. Other convenient forms for N are
given in Appendix A.

Optimum profiles have been calculated according to Equation 12 for a fibre with 17% germanium
oxide on axis and a boron-oxide doped cladding. The variation of N and NV at Ao = 1.06 um is shown in
Fig. 1. The calculated optimum profile is shown in Fig. 2, where A(x, v), in the present case, is (r/a)>. It

o 17,0 7.0
~ B350 Exact
S
o S
: n
=
»
L]
= Figure 1 Plain line: Variation of the relative group index N
as a function of the relative phase index N =1 — n*/n? for
=) o7 various materials at A, = 1.06 um. The dots correspond to
! i S measured points [2] with the concentrations of german-
o 0.01 V0= 2 paa ium and boron oxide in mole percent shown near the dots.
N The dashed line corresponds to the linear approximation.
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differs considerably from the profile obtained by assuming that N is proportional to N. The approximate
(power-law) profile is shown by a dashed line in Fig. 2.

3.2 Deviations from optimum profiles
The profile r(k)opy that equalizes the times of flight for all helical rays and quasi-monochromatic sources
is given in Equation 11. Let us call d the deviation of (r/k) (9k/dr) from its optimum value (r,,,/k)/
(Orope/0k). It readily follows from Equation 9 that the time of flight per unit length deviates from a
constant by —d/2. Let, for example, the refractive index profile n(r) deviate from the optimum profile
nopt(r) b}'

n(r) — n(ropy = no 6 sin (2nNyr/a) (14)

where 6 < 1 and N, represents the number of periods along the radius. After rearranging we find that the
maximum variation of f is approximately

At = I’I'Nos. (15)

Thus A¢ varies linearly with the number of periods N, if the amplitude § is a constant. For large values
of Ny, however, wave optics effects, that are not accounted for by the result in Equation 15, become
significant.

3.3 Two (or more) quasi-monochromatic sources

Let us suppose that we want to transmit signals at two different optical frequencies, say w; and wy,
with w; — w; <€ w; + w;. Because of their frequency separation, these two signals can be combined
or separated, at least in principle, with the help of interference filters or gratings. We seek to design

a fibre that has optimum transmission capacity at these two frequencies. The relative frequency separa-
tion being small, it is sufficient to ensure that the condition Equation 10 is satisfied in the region of
the central frequency. In addition to the condition ¢ = ¢, we require that 3¢/dw = d¢¢/dw. When these
conditions are fulfilled, pulses at different carrier frequencies do not broaden greatly, but they may
arrive at different times.

In order to satisfy the conditions set up above, we need materials whose optical properties depend
on at least two parameters. for example the concentrations of two dopants. Let these two parameters
be denoted as u, and v. The wavenumber k is considered a function of z,  and w, while « and » are un-
known functions of the radius r.

If we set p =log r, and denote partial differentiations with respect to p, w, u or v by subscripts (e.g.,
ko = 0k/dp = rok/or), Equation 10 is

ku, + ko, = k(ki, [k, — 1) = Fu, v, w) (16a)
and differentiation with respect to w gives
keully T kot = For (16b)
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The solution of Equation 16 is straightforward. We have
dvfdu = vfu, = — (kpu — kuF GlF) (ks — kuFolF). (17)

Once the Sellmeier-law coefficients have been measured for various sampled values of # and v (see Ap-
pendix), we can express k, k, and k,,,, in the form of polynomials in « and v. The r.h.s. of Equation 17
is then a known function of « and v at some central frequency w. Numerical integration gives the curve
in the u, v plane that satisfies Equation 16. This curve defines the class of materials that ensures that
optimum profiles remain optimum at neighbouring frequencies.

Let us assume for convenience that the parameters u, v are equal to zero on the fibre axis. Near the
axis, Equation 17 turns out to be a second degree equation for u/v. Assuming that this equation has
real solutions, we can proceed away from the axis in the direction of decreasing refractive indices. It may
happen that at some point along the path in the ., v plane the index stops decreasing. In that case a limit
value for A is reached.

We have verified that the condition in Equation 17 can be satisfied for a mixture of phosphor oxide,
germanium oxide and silica at the frequency where d¢,/dw = 0. Related results have been obtained by
Kaminow and Presby (in preparation). Their results, however, are based on the rather restrictive assump-
tion that the refractive index is proportional to dopant concentration at any wavelength.

4. General rays. Non circularly symmetric profiles

In the previous section we have restricted ourselves to helical rays. The question may be raised whether it
is sufficient to equalize helical rays. This as we shall show is approximately the case. The formalism used
in the present section can handle non-circularly symmetric profiles without further complication. We
shall therefore treat the general case.

The equations that describe the motion of optical pulses in inhomogeneous media (the space-time
Hamilton equations) are given in [5]. In that reference, it is shown (Equations 2 and 4) that the time of
flight ¢ of a pulse along a ray, and the axial wave number (or propagation constant) k, are given, respect-
ively, by™

1
ket = 5 L"(ax/aw) & (8)

and -
K2 = L[ K+ XK/oX) + Y(9K[aY)] dz. (19)

In Equations 18 and 19, L denotes the length of the fibre and we have defined
X=x Y=y K=k (20)

In these equations, K and its derivatives are functions of X, ¥ and . X and Y in turn, are known
functions of z once a ray trajectory X = X(z), Y = Y(z) has been specified. Thus, the integrands in
Equations 18 and 19 are functions of z. It follows that any linear combination of k, and k? can be
expressed as an integral over z.

Let us set
ak? + bkt +c =0 (21)

and define the three constants a, b, ¢ from the condition that the variation of t when k, varies be mini-
mal. When k, is smaller than the cladding wavenumber k, = (w/c)n,, where n, is the cladding index, the
optical power for the ray considered leaks out. We may therefore restrict ourselves to rays that have

k. > k.. On the other hand, the maximum value of %, is the wavenumber on axis ky. Thus, the permis-

sible variation of k, is
ke <k, <ko. (22)

*Marcatili’s result [4] is essentially the ratio of Equations 18, and 19, the integration being performed over r instead of
z. To make this transformation, note that dr/dz =k [k,, where k, and k, denote respectively the radial and axial com-
ponents of the wave vector.
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Taking into account the constraint that 7 must be equal to the time of flight #, of pulses along the fibre
axis when k, = kg, it is not difficult to show that the total change of ¢ in Equation 21 is a minimum (and
therefore the impulse response width is a minimum) if ¢ = ¢, when k. = k.. This condition defines the
values of ¢, b, ¢ in Equation 21 to within a common factor. Equation 21 becomes

k2 — (ko + k)(t/to)k, + Kok, = 0. (23)
Using Equations 18 and 19, we find that this relation is satisfied if

L
[, Biko + kW/te)PK/2w) — K + X(OK/0X) + Y(3K/3Y)] — Koke} dz = 0. 24)

This is the case, in particular, if the integrand in Equation 24 is equal to zero. If we introduce the rela-
tive phase index V and the relative dispersion index N defined in Equation 13, we find after rearranging
that the integrand in Equation 24 vanishes when

X(oN/jaX) + Y(oN[aY) = (1 +x)N—N (25a)
X = kolko = Hefno. (25b)

In genieral, NV as well as N, may be a complicated function of X and Y. To simplify the solution of
Equation 25 we consider materials that can be specified by a single parameter, say d. This is the case, for
example, when the dopant concentrations dy,d;, . . . have the form d, =d,(d), d; =d,(d) . . . where
the d;(d) are arbitrary functions of the parameter d. \_Ne assume that when N is plotted against NV for
various values of the parameter d, a unique value of N corresponds to a given value of N, that is, N can
be considered a function of N. Because N is a function of N alone, Equation 25 is a partial differential
equation for N(X, Y) whose solutions provide the optimum profiles for quasi-monochromatic sources.
They are obtained by setting N = N(h) where h = h(x, v) is a homogeneous function of degree 2 in x
and y (or of degree 1 in X and Y),” as in Equation 31 below.

Substituting this form for N in Equation 25 and using the Euler theorem® we obtain

where

dNV i
==h = (] + = )
h (I1+XN—N (26)
which can be integrated in the form
N -
h(x,») = exp L,. [ + )N — N dv). 27)

The lower limit of integration is taken to be N = 2., where 22 denotes the value assumed by N at the
cladding,

Thus, we have h(x, y) =1 w_}!en N =2A. On the other hand, we have h(x, y) = 0 for N = 0 because
the integral diverges as NV (and V) approaches 0.

In the special case where /V is proportional to N, an assumption made implicitly in [5, 6],
N = DN (28)
where Dy is a constant. It is not difficult to show that stating the proportionality of N to N is equiva-

lent to stating the linearity of d(n®)/d} as a function of n?, or approximately, for very weakly guiding
fibres, the linearity of dn/d} as a function of n. Thus, we obtain from Equation 27

N(x,y) = 2Ah(x, )" (29)
where the exponent « is related to Dy, by [5]
* A function fx,y) is said to be homogeneous of degree x in x and y if f(Ax, Ay) = A¥ f(x, ») for any A. The Euler

theorem on homogeneous functions says that (xaf/ax + yaf/ay)/f = k. This theorem follows from differentiation of
the defining equation with respect to A and setting A = 1.
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D [(1 + &) = 1/(1 +x). (30)

When the linear approximation of Equation 28 holds, the optimum relative index profile is a homo-
geneous function of degree 2« in x and y, where & is defined in Equation 30 and x = 1o/ for minimum
impulse response width. The degree k is unity when D, = 1 (no material dispersion) and x = 1 (very
weakly guiding fibres, n, = no).

In general we integrate Equation 27 numerically. The function A(x, ¥) can be, for example

h(x,y) = (x/a)* + (v/b)? (31)
h(x,y) = (rfa)*. (32)

For circularly symmetric profiles, the condition of Equation 27 (which reduces the quasi-monochro-
matic r.m.s. impulse response width to a value as small as o(ns/km) = 150 A?) coincides with Equation
12 (which equalizes exactly helical rays) if we make the approximations x ~ 1, N = 0. These approxi-
mations are valid for weakly guiding fibres, A< 1.

or

5. Conclusion

Index profiles that reduce the quasi-monochromatic r.m.s. impulse width of multimode fibres to a value
as small as 150 A2 ns/km can be found from a simple integration. No assumption has been made concern-
ing the dispersion of the material. This result reduces to a previous result of Marcatili for the special case
of circularly symmetric profiles. We have outlined a procedure to find dopant materials such that opti-
mum profiles remain optimum at neighbouring frequencies. We find that the transmission capacity of
multimode fibres excited with LED sources can be as large as 150 Mbit/s over 10km lengths if the central
frequency can be selected. This is at least ten times better than that achieved at the time of writing.

How much effort will be needed to approach the theoretical limit is a question difficult to answer at

the moment.
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Appendix A. Evaluation of the relative dispersion index N
A relative phase index N and a relative group index /N were introduced in the main text

N =1-kki = 1 —n*[n} (Ala)

N = 1 — (3k?/0w)/(0kd [3w) (Alb).

where k = (w/c)n denotes the wavenumber, w the angular frequency, and ko and 1o the values of k and
n respectively, on the axis.

Let the variations of the refractive index n with the free-space wavelength \o be defined by a three-
term Sellmeier law

Bl = 3 A=)y = () )
=1

According to (Equation A2) each material is characterized by six coefficients, namely, 4, A,, A3, 15,

Iy, 15.
Let a dispersion index (not to be confused with the group index) be defined by

i = m/vju (A3a)

where
vfu = (w/k)(dk/dw) (A3b)

denote the ratio of phase to group velocity. In terms of the Sellmeier coefficients, we have
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3

-7 . ] -

A=l = ?);]A.,u =) (A4)
It is not difficult to show that N is related to 7 by the simple relation

N = 1 -} (AS)
where i1, is the value of i on axis.
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