Optimization of the index profile of an optical fiber at

N wavelengths

J. Amaud and A. M. Desags

The paper provides simple expressions for the dopant concentrations that optimize the bandwidth ofa fiber 4
abanumber of wavelengths. The solution is related to Olshansky's multiple e profiles. Numerical applica.
tion/is made for germania, fluor, and phosphorus doping at wavelengths where the losses are small, The ef-
fect of a free parameter on the fiber A and'its bandwidth is outlined.

I, Intraduction

It becomes increasingly important for wavelength
multiplexing to design multimode fibers that provide
large transmission capacities over a broad spectral
range. It is well known that a filier doped with only one
dopant such as germania can be optimized at only one
carrier wavelength and that the transmission capacity
of the fiber drops fairly quickly with increasing distance
from that wavelength.! If, however, two dopants are
used, such as germanium and fluorine, it may be possi-
ble to optimize the fiber, not only at one particular
wavelength but also in the neighborhood of that wave-
length. An exact procedure for achieving this result has
been presented in Ref. 2. We exhibit here the class of
analytical solutions that results from the exact equa-
tions when we introduce the approximation that tha
index is a linear function of the dopant concentra-
tions, an approximation used also in Refs. 3 and 4. The
class of solutions that we find, related to Olshansky’s
multiple-er solution, depends on one free parameter.
The limitations in the fiber A as a function of that free
parameter will be outlined. Preliminary results were
in Ref. 5.

We shall use the paraxizl form of the ray equations.
As a result, the optimum profile in the absence of dis-
persion is found to be a square-law profile [n(r) ~ r¥,
while the exact result is n(r) ~ r* withk = 1 —6A/5.
For the usual A values, A ~ 1%; however, the correc-
tion term 6A/5 is too small to be of practical signifi-
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cance. Likewise, for the optitnum profile, we find an
unlimited bandwidth, while the exact result is of the
order of 20 GHz - km for the usual A values. Thera
again, random departures from the optimum profile are
such, with present fabrication techniques, that the
paraxial ray theory appears to be suff iciently aceurate
at the moment. The method described in this paper is
applicable also to the exact ray equations, but the re- T
sults are less transparent. This is also for pedagogical
purposes that we first deszeribe the time-of-flight
equalization for helical rays, that i, for rays keepinga -
constant distance r from the axis. But we later show

that the optimum profile obtained is also optimum for_
all rays (or all modes), and, furthermore, we generalize
the result to noncircularly symmetric-index profiles. =

We have introduced in our work the so-called linear i
approximation, according to which the refractive index |
is at any wavelength a linear function of the dopant. L&
concentrations (or rather, less stringently, a li near. %
function of any monotomie functions of the dopant
concentrations). For a single dopant this amounts to
saying that dn/dX varies linearly with n as the dopant
concentration varies. While this approximation is
reasonable for small dopant concentration, it is opened
to question for a large dopant concentration (=10 mole
%?). The existing experimental data are too inaccurate
Lo enable us to evaluate the nonlinear effoct, This
Justifies the present use of the linear approximation
(made also by virtually all authors to date).

Within the lincar approximation, there is a strong
discrepancy between authors for the variation with &
wavelength of the optimum o = 2, profile exponent for
phosphoric oxide doping (see Fleming® vs Shibata’).
Due to this uncertainty we have based our caleulations
or. the most recent measurements? for that dopant.

A word is in order concerning the arbitrary parameter
6 used later in our work. It is a fact, already recognized
by Olshansky, that once two dopants have been speci-
fied, the optimum profile is not yet uniquely deter-. =
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mined. The solution of the eguations depends
mathematically on an arbitrary parameter that we label
f. It8 =0, we get the solution proposed by Kaminow
and Presby,? and usually (but not always) one gets for
= 0 the largest A values for the fiber. For ) = =, the
two dopants are in fact counteracting, and usually the
fiber A is small (yet positive, so that the solution re-
mains physically acceptable). Any intermediate # value
is permissible. The choice of 0 thus depends on tech-
nological considerations that are not discussed in detail
in our paper. It seems that nonzero f values ace of jn-
terest.

iI. Baslc Theory

We shall restriel ourselves to paraxial ray theory.
Furthermore, we shall neglect the dispersion of the
material on-axis and discuss later the effect of such a
dispersion. Let ni(x,y,f) denote the refractive index of
the fiber material at a point x, v of the cross seetion and
optical frequency f. Next we define a normalized
index

ng = n(0,0,f), (1)

which we call the potential by analogy with the me.
chanical problem.

Let us first consider a circular fi ber, where n depends
only on the radivs r, U(x,v.f) = Ulrf)sr = (22 +y2) 12
and give special consideration to helical rays, that is, to
rays that remain at a constant distance from the axis,
The time of flight ¢(r,f) of pulses traveling along such
rays is given by (see Appendix A)

Ulry ) =1 =nlzy.ing

re=ll,—U,~U, )

where we have made the changes of variable
p=logiry)  ;  p=logf (3)
for later convenience, and 7 is a relative time ol flight

T=tlrfifto=1 : to = ¢{0,f), (1)

=3 [For helical rays, p = constant along the trajectory so

that the average in Bq. (A7) is unnecessary.] Thus [J
is considered a function of p and v (instead of r and 41

and U, U, denote partial differentiation of U/ with re-

spect to p and v, respectively, that is,

U, aU
et betriodie 5
ap A fo)
U au
U=—=f—. b
a "a,f 2]

The problem we seek to solve is to find comb; nations of

dopants so that 7 = 0 at as many wavelengths as possi-
?Jle. As long as the dopant concentrations remain small,

L itis reasonable to assume that n is, at any wavelength

~ (or frequency), a linear function of the dopant concen-
‘trations. This linear approximation is used in the next
- Paragraph.

.'E M. Linear Approximation
- This approximation is expressed by the condition

- that U(p,») has the form
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N
Ulpw) = 3. Ai(v)uilp) (6)

for N dopants. Thew;(i =1,2,. .. , N) denotes mo-
notomic functions of the dopant concentrations, so that
ui(0) = 0. For example, u may be the difference be-
tween the dopant concentration at r in mole % and the
concentration on axis. The A:(i=1,2,... , N}, on the
other hand, is frequency-dependent coefficients, If we
introduce the form Eq. (6) into Eq. (2) and specify that
7 1s equal to zero for all p and frequencies Vi, Vg ey DN,
we obtain the following system of equations:

N
2: .ﬁ;(h’;)!:,‘l_ i~ ﬂ;‘,(lj}ﬂf = ﬁ,‘{l'])uf = D;

i=1
N
XA (e — Dy (rgde; — AjQowdu = 0, (7)
i=]
where the subscript v denotes differentiation with re-
spect tov. ‘This system is conveniently written in ma-
trix form

Au, = (A+A)y, (8)
where we have defined the vector u = (erug, . . ., uy),
and the matrix

. [{l;l'.\]].. AnlAy) ©)
FAS0.7¥3 . o1 05 |
Equivalently, provided A is nonsingular, we have
A Niv M= |+ A-1A, (10)
dp

The solution of the first-order matrix equation in Eq,
(10) is well known. We have®

N N

u= Vieris Sooa, (11)
i=1 i=]

where &;, Vi,i =1,2,..., N are, respectively, t_he ei-

genvalues and eigenvectors of the M matrix, that is, the

solutions of

MV = gV, (12)

The V being unnormalized, expansion coefficients are
unnecessary. In the second expression in Eq. (11) we
have replaced e? by r2 since p = logrz. The proof of Eq.
(11) is straightforward, As we can see, our solution is
much simpler than that given by Olshansky in Ref. 4.
The exact comparison is difficult, but the two solutions
are probably physically equivalent.

The solution in Eq. (12) is physically meaningful if
the eigenvalues k; are real positive. Note that the ei-
genvectors V; are defined only to within arbitrary fac-
tors. If the eigenvalues «; are all real and positive, we
have at our disposal N — 1 parameters. (A common
factor for all the V is immaterial.) If only some of the
&; are real and positive, the number of arbitrary pa-
rameters is correspondingly reduced. If we consider the
case of two dopants only, N = 2, one of the eigenvalues
s always close to unity because the correction A—1A, to
the unit matrix is small in all practical cases. It follows
that the second eigenvalue is always real, but it may be
negative. We shall discuss later the practical signifi-
cance of negative eigenvalues. In the next section we
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show that the basic result in Fq. (11) is applicahle to
arbitrary paraxial rays (not just helical rays) and also
to some noncireular index profiles.

IV. Generalization
We now consider more generally nonecircular index
profiles
Ulxy )= 1= nlx,y.ffng : na = n(0,0.6). (13)

The relative time of flight 7 defined earlier can be
evaluated from the integral [see Fqs. (A7) and (A9)]

Z e .
7rlling. > f (% (22437 — U/ = U,) dz, (14)
== 2 0
=k (x aU+ JU) - 1
STy = =
U ac % dy g ( i

As in the previous section, let us make the assumption
(linear dispersion) that U(x,y.f) has the form

Uleyf) = MlPug(epy) +.. .+ Ax(Nunixy). (16)
In that case, the expression for = is, from Egs. (15) and

3

N e o
re 2 k(e B n s

f=1 Iy ¥
where v = logf. We seek to sa tisfy the conditiong
) =...=+(fy) =0 (18)

for N frequencies fro.o. . fn. Y wedefine the matrix

Al Ax(f) ]
A= 9
[!—‘h'-’fw) wnn AN (19)
and veetor u by
a= {u;_.....u,\r}, (20)
we can rewrite the conditions in Bq. (18) in the compact
form
y [, 2 &_E) I AL
'f”(xax+y6y (IT+A7ANa=10, {21)

where A, denotes the derivative of the A matrix with
respect to v,

Let us call V;, &; the eigenvector and eigenvalues,
respectively, of the matrix

M=1+A"1A, (22)
that is,

MV; = gV, (23)
Then, a solution of Eq. (21) can be written
u= Z Vihi*, (24)

where h; denotes homogencous functions of degree 2 in
x and y. Indeed, using the Euler theorem on homoge-
neous functions, we have

o= hf, (25)

and thus, substituting the expression for u in Eq. (24)
in the conditions in Eq. (21), we obtain
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£ ki VihF = MVhy =0,
&

the eigenvectors and eigenvalues, respectively, of M
Note thatthe h;, i = 1,. .., N need not be all the samg
For example,

hl = ':-rf-rc j'Z i (}':{Vv)gr (“_}7:1}
e = [(x/x)* + (/v )12, (27h)

are acceptable expressions.

Once the dopant concentrations that make 7 vanish
at the frequencies fy, . . . , fn have been found, the time
of flight of pulses traveling on a particular ray at any
frequency f is given by

T(rayf) = X [tk — DAY — Bdf)] - VT, (28)

The quantities 2% are the z average of the x; powers of

the homogeneous functions hi(x,y). They depend on the
two constants of motion of the ray in a way not known
analytically, in general, unless N = 1.

In circularly symmetric fibers, however, we may set
h = (r/r¢)%. There are helical rays that correspond to
constant values of r, and, for such rays, h is a constant,
and thus h* = (r/r.)%. Ifa ray oscillates between ry and
rz it may be that the fine details of the ray trajectory
between r; and ry are not very.important for the eval-

uation of h*(r), and thus we may perhaps use the tra- g

Jectory applicable to square-law media.

In Eq. (28), A(f) = [A5F) 0 Ay (f)] is a vector, not

a matrix as in Eq. (19).

V. Equalization in the Nelghborhood of a Frequency

Instead of equalizing the times of fl; ght at two distinct
frequencies f; and f5, we may want to equalize the times
of flight at frequency f; and in the neighborhood of that
frequency. These conditions are expressed by

7(r.fo) = 0, 21 /0f2 gy = 0; (29)
ar/dfl-p =0,  aNr/jaf Ni=ta = 0.

The caleulations are almost identical to the ones given
in the previous sections. However, it is easier here to
relate the two-dopant case to the behavior of each do-
pant taken independently. Under the linear approxi-
mation in Eq. (6) we have the same solution as in Eq.
(11) if the A matrix in Eq. (10) is replaced by

Ql e AN
A=A Ap |, (30)
&iN} axr\(.i

where the superscript i denotes the ith derivative with
respect to » = logf, and all quantities are evaluated at
f = fo. Abeing a function of fo, upper dots will refer to
derivatives with respect to fo.

Let us give now the explicit expressions for the case
of two dopants and equalization of r and dr/dv only.
The solution is provided by the system of equations

(26).

Each term of the sum vanishes because all the Vi, x; are
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dug/d p = My + Mysus,
: dugin: p=Maguy + Masity,
where M = 1 + A-1A or explicitly
My = (A Ap + Ny R Ao — R AB)K,
My = (A - AAW/K,
May = (8,4, - AD/K, (32)
Mo = (AsBg 4+ MAs — AjAg — A A)/K,
K= MAy— Mgy

(Here the upper dots are equivalent to the superscripts
1 and the double upper dots to the superseript 2.)

It is instructive to consider also the problem from a
different viewpoint. Leb us assume first a linear rela-
tionship between dopant concentrations

(31)

g =nuy, (33)

where 7 is, for the time being, a constant.
The fiber A (here A denotes as usual the relative
change in refractive index, a scalar quantity) is then

A=NMug+ Astis = (.&| + pha)eq. (34)

"~ Since we are effectively dealing now with a single doping

parameter (even though two doping materials are in-
volved), we may use the well-known condition for profile
optimization at one wavelength and define an optimum
k by

k=1 =A1A = (A; + nAz)"UA, + nAy). (a5)

In general, the k value defined in Eq. (35) varies with
frequency, but one hopes to be able to make dx/df =0
at some selected frequency fy by a proper choice of 1,
which i=s so far undefined.

If only dopant 1 (respectively, dopant 2) were used,
we would define optimum x values as

k1= 1= A7'A; (dopant 1 only), (36a)
ko= 1= A5'A, (dopant 2 orﬁy}. (36hL)

It is convenient to introduce these quantities in Eq. (35).
We obtain

&= (x + k) (1 + ), (37)
.~ where we have set for brevity
: 7' = (Aa/A1)n
~ Note that
i i=(e—k)0 ; ==(=x)/(x— ko) (39)

The condition k = 0 is, after rearranging, a second-
degree equation for the optimum value of 7 = us/u;:

K==, (38)

A2+ B+ C=0, B=ki+ke+ (ka—n1)2 (40)
A=ksy C=iy
whose solution is
1= (Ay/Ag)f— (kg + &p) — (k2 —k1)2
£ (ki = #2)® + (kg — )8+ 2(ky + ko) (k2 = w12 V24/2k,. (41)

This is the final result. It relates the two optimum
Concentration ratios that equalize the times of flight of

e
P S Ty

B e I G T A . G e G O S S s S i R P8 2

all rays about some frequency fp and the close neigh-
borhood of fo. This value of 3 is expressed in terms of
the optimum r values (kq,ks) that would be required if
the two dopants were used independently and the fre-
quency derivatives of these x values.

From Eq. (41) we can write an equation for the opti-
mum g values, which coincide, of course, with the ei-
genvalues of the M matrix in Eq. (10).

We have for the optimum 2, dopant « values:

k= kg — ky + 3 —«])
& [y — k2)?
e 2(-’-’: + x;)(kl =5 ,"-__"}E + (.Ll = NQ)JJ”@H?“';: == K[), (42)

The present formulation is useful because sometimes
the data are given in terms of k1 (f) and xa(f), measure-
ments being made on fibers doped with a single dopant.
Also, we can see clearly from Eq. (42) a number of in-
teresting features. For example, if k; = &y, that is, at the
frequency at which the two k{(f) single-dopant curves
cross, there is only one solution for k, namely, k = x; =
k2. The dopant concentration ratio is either

wafug = —AyfAs = U =0, (43)
which is of no practical interest, or
waltl; = — (A /A (k1/k2). (44)

The latter equation can be written
Ky + kaiada = 0. (45)

T'o understand better the physical significance of this
equation, let us assume that ©,, us are the dopant con-
centrations atr = r,, the core radius. Then ;A\ is the
total change of relative index due to dopant 1, and,
similarly, upA; is the total change of relative index due
to dopant 2. We see that the ratio of these concentra-
tion changes is weighted by the respective slopes &; and
kg, a result that is intuitively understandable.

VI. Calculated Results

To calculate optimum dopant concentrations we have
used the results of Fleming’s measurement on doped
silica samples.57

The unshaded areas in Fig. 1 give realizable dopant
combinations that optimize the fiber bandwidth at two
wavelengths, A; (horizontal scale) and Ao (vertical seale),
with real positive exponents &y, ks. As we can see, ac-
ceptable solutions are rather scarce. Figures 2 and 3
give curves in the dopant concentration plane that are
physically acceptable. They are labeled by a parameter
f, which can be chosen arbitrarily from the point of view
of the theory. The value of the relative index difference
A in the fiber cross section, however, depends on fl (see
Fig. 4), and, in general, 0 will be chosen to maximize A
(here flopt =~ —5).

Figure 5 shows a more conventional result: the
variation of the optimum exponents « for fluor doping
alone and phosphoric oxide doping alone. Note that
not all the curves published in the literature agree with
the ones presented, calculated from Ref. 6.

Figure 6 shows the pulse broadening At (bandwidth
= 1/At) forone and two dopants. This figure gives only
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Fig. 1. Unshaded areas give the combination of wavelengths (Ay,\2)
at which the profile can be optimized. The eombination of dopants
considered is indicated on the correspending figures. Data from Ref.
B. From Ref. 7 and P + Ge all wavelengths are in fact permissible,

U,
5%

e ke

Fig. 2. Heavy lines give the permissible relationship between dopant
concentrations (14, phosphoric oxide; s, fluor, in mole % referred to
the values on-axis). The labels on the curves (0,—10,—40) refer to the
arbitrary parameter fl. The dotted curves are unphysical branches.
The dashed straight lines give the U = 1 = n(r)/ngy values. The
maximum {7 value is the fiber A (e.g., 1%). The dopant considered
here are fluor and phosphoric oxide, and the two wavelengths are \;
= 0.8and Ap = 1.3 um.

an estimate of the fiber handwidth, as only helical rays
were taken into account for the sake of simplicity.
The case where one of the two exponents « is negative
is intriguing. Although n diverges near-axis (r — 0),
nevertheless the solution may be of some practical in-
terest if we avoid exciting the central region of the fiber
core. Figure 7 gives the permissible dopant concen-
tration curves, Fig. 8 the normalized index profile, and
Vig. 9 the fiber bandwidth (=1/At) for that negative &
case. As we can see, such solutions are not as unac-
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-5%

Fig. 3. Same as Fig. 2 for Ay = 0.8 jom and Ao = 1.55 um.

A
001
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=50 0] 50

Fig.4. Maximum values of A as a function of the arbitrary parameter
f for a combination of optimum wavelengths: Ay =08 umand As =
1.3 um with phoesphoric oxide and fluor.

ceptable as one may feel at first. If this is the case, the
shaded areas in Fig. 1 become permissible.

Vil. Conclusion

We have discussed in much more detail than was
done previously the optimization at N wavelengths of
the bandwidth of a multimode optical fiber excited by
a quasi-monochromatic but spatially incoherent source,
using N dopants. Although our result seems to be ba-
sically the same as the Olshansky ‘N — «’ profile, our
formulation is considerably simpler because of the use
of matrix algebra. We show that these results follow

from a more general formulation given earlier by ene of*

us by introducing the approximation that the index is
a linear function of the dopant concentration. We have
outlined the effect of the free parameter ¢ on the overall
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Fig. 5. Optimum profile exponent ks as a function of wavelength
tor fluor doping alene (F) phosphoric gxide alone (P, Ref. 6: Py, Ref.
7)y germanium doping alene (Ge)-and boron doping alone (B),

Diynsrsm)
(a)
A tCns/km?)
12z
~— \ H=-10
O
1
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13 155 1.8
(b)Y t\o(wnl

Fig. 6. {a) Pulse broadening as a function of wavelength for fluor

alone and optimum wavelength at 1.4 um (dashed curve), phosphoric

oxitde alone and optimum wavelength at 1.4 um (dash-dot curve), and

acombination of Lhese two dopants for optimum bandwidth (~1/At)

#1.0.8 and 1.3 pem and various values of the parameter f (plain lines).
(h) Same asin (a) for P+ Ge from Rel, 7.

i
L

0 a“mﬁﬁ?ﬁ?;.’mf "';",'"

Uz

—5%

Fig. 7. Curve in the dopant concentration plane (i1, BaOa; us, Ge

Oz in mole % referred to values on-axis) for the case where one of the

two x exponents is negative. Other labels as in Fig. 2. The two
wavelengths are Ay = 0.8 gm and A, = 1.6 um.

u
0.002]

- 0.002

Fig.8. Normalized index IJ as a function of normalized radius r/rc

for the case where one of the two x exponents is negative. If 0 # 0 the

profile is not realizable near-axis. Dashed curves are unphysical,

because U must increase monotonically as a function of r (upper

curves), and wy, us do not exceed £5% (lower curves). We consider

the two dopants horon and germanium and the wavelengths Ay = 0.8
pm and Az = 1.6 pum,

A of the fiber and on its bandwidth at frequencies other
than the ones for which it has been optimized.

However, for the practical use of the method, it must
be recognized that much uncertainty remains in the
dispersion of the materials used, and the calculated
profiles should be used with some caution. In that re-
spect, the interferometric technigue reported in Ref. 9
should be of great help.
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Fig. 9. Relative time of flight for helical rays of radius r as a function

of wavelength for the case where one of the two exponents is negative

(zee Fig. 8) and fl = 0.5. Inecontrast to the normal case, At increases

as the ray radius decreases. The dopants are boron and
germanium.

Appendix A. Expression for the Flight Time
The tirpe of flight along a ray of trajectory x = x(2),
¥ = y(2) is obtained by integration;
tz) = j;‘ w=tds, (A1)
where
ds = (dx?+ dy2 + dz2)1/2 = dz[1 + (32 + 32)] (A2)
is the elementary arc length, u is the local group ve-
locity, -

chulxy) = &%Um = 1141, = mol(l + nasng)(L = U) = U]

(A3)
from the definition U = 1 — n/ngand v = logf. Letus
define a relative time of flight

T =tftg—1. (A4)
to = z/ug = (2/c) % {frio) = (znofe)1 + np./ng) (A5)

denotes the time of flight of rays on-axis.

z

T+1= limzl | [1+ Y(x2+ y9)

Al
K= U= U1+ npng)ldz. {AB)
Usually ng,/ng << 1, and thus it will be omitted in the

following. Neglecting terms of order A%(U < A), we
obtain

r=Ee+ 38 - U=1,, (A7)
where the upper bar denotes the integral and limit in
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Eq. (A6). It is convenient to rewrite the first term in
Eq. (A7) in a different form.
From the equations of ray motion
alr als

F=—— G Vo= —— A8
ar 3 ay (A8)

it follows that

d? au @

| 2 e AT | (o e | e e

fqdzg(x. + %) = hl2? + %) .’s(r P a;]} (A9)
Let us apply that result by considering helical rays r2
= x? + y? = constant in circularly symmetric, but oth-
erwise arbitrary, profiles. We obtain
Hii2 +y2) =1 [x £ + yﬁfl =dU/dp p = loglrd). (A10)

dx dy

If we use the expression in Eq. (A10) in Eq. (A7), we
obtain the expression for r used in the main text [Eq.

(2)].
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