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OPTICALLY-PUMPED SEMICONDUCTOR
SQUEEZED-LIGHT GENERATION

J. Armnaud
Université de Montpellier 11, Equipe de Microoptoélectronique de Montpellier, Unité

associée au CNRS 392, USTL, Place E. Bataillon, 34095 Montpellier Cédex 2, France.

ABSTRACT

The theory presented shows that light emitted by low-temperature
semiconductors under intense optical pumping (with fluctuations at the
shot-noise level: SNL) should be amplitude-squeezed down to half the
SNL at nonzero frequencies. Amplitude squeezing may be obtained also at
zero frequency when spontaneous carrier recombination is significant. It
is essential that the optical gain depend on photon emission rate, €.g., as a
result of spectral-hole burning. A commuting-number theory that agrees
exactly with Quantum Theory for large particle numbers is employed.
Comparison with results previously reported for 3-level atom lasers is

made.



1 INTRODUCTION

[t is desirable that the flow of photons emitted by lasers fluctuate as
little as possible, in particular for the measurement of small absorptions.
Quantum theories proposed by Golubev [1], Yamamoto [2], Haake [3],
Benkert [4] and others, show that complete quieting can be achieved when
the pump does not fluctuate. The basic concept is that under ideal
conditions each injected excited-state atom or electron-hole pair generates
a photon. Accordingly, nonfluctuating pumps entail nonfluctuating photon
flows as long as particle storage can be ignored, i.e., at small baseband
frequencies. Nonfluctuating electrical pumps consist simply in a battery
and a resistor.

Because many semiconductors cannot be electrically pumped, it is
important to determine whether squeezed-light may be obtained with
optical pumping whose fluctuations are usually at the shot-noise level
(SNL). The previous discussion shows that light fluctuations are in that
case, at best, at the SNL at zero frequency if spontaneous carrier
recombination is negligible. But below-shot-noise operation is possible at
nonzero frequencies. A quantum theory by Kolobov and others [5]
indicates that this is the case for 3-level-atom lasers. Below-shot-noise
light fluctuations may occur also at zero frequencies provided
spontaneous carrier recombination is significant.

[t is important to examine whether results similar to those reported
in [5] hold for semiconductors. The theory presented in [6] that takes
spectral-hole-burning (SHB) into account suggests that complete quieting

of the light emitted by optically-pumped semiconductors could indeed be

obtained. When statistical fluctuations of the optical gain are considered
however [7], optimum squeezing turns out to be only half the SNL.

A more complete theory is given in this paper. The single-mode
sermiconductor laser is supposed to operate near peak gain, i.e., the gain
does not depend importantly on frequency, and strong index confinement
is assumed. Under such conditions frequency fluctuations do not react
back on amplitude fluctuations. Because the laser operates well above
threshold, fluctuations are small compared with steady-state values.

For the present situation of large particle (electrons and photons)
numbers, the full Quantum formalism is not required. It suffices to
employ a commuting-number theory [8]-[9] that generalizes Lax's
semiclassical theory [10]. Amplitude noise is the sum of two
contributions. a) an intrinsic contribution that occurs with quiet pumps
and is due to atomic quantum jumps. b) an extrinsic contribution
expressing the system response to pump fluctuations. The two
contributions are independent and add up. In the case of semiconductors
in which SHB is significant the gain depends on the photon generation
rate. Furthermore, statistical fluctuations of the gain, to be discussed
later, should in that case be considered.

The intrinsic contribution vanishes at zero baseband frequency as we
discussed before. It grows as a function of frequency because of photon
storage, approaching the SNL at frequencies of the order of the cold-
cavity linewidth. (This simplified picture that ignores carrier storage is
valid at high ouput-power levels). The pump-fluctuation contribution is
proportional to the amplitude-modulation response of the laser. It decays
slowly as a function of frequency when SHB can be neglected, but drops

quickly when SHB effects are present. Considering the two contributions
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together, the reduced modulation bandwidth entimls o dip below the SNL
al moderate frequencies. Below SNL operation with a pump fluctuating at
the SNL thus requires gain compression.

An equivallent electrical circuit applicable to semiconductor lasers,
redrawn in Fig.1 from [6], helps us visualize what is happening. For
simplicity, spontaneous carrier recombination is omitted. The schematic
involves primarily two resistances: a negative resistance: -(1+f), where f
is proportional to the SHB effect, relating to the nonlinear emitting
element, and a positive unity resistance relating to the linear absorber
(perhaps a detector). The relative pump-rate fluctuation AJ/J is
represented by the current source on the left, while the photon rate
fluctuation AQ/Q is represented by the current on the right. The average
values of J and Q are equal. It follows from the schematic that AQ = AJ at
zero frequency irrespectively of SHB since the capacitances can be
ignored, in agreement with the discussion given at the beginning of this
introduction.

Consider next nonzero frequencies. The capacitance Cc, which is
equal to the cold-cavity photon lifetime tp, can be neglected at the
frequencies presently considered. The negative capacitance Ce expressing
carrier storage is inversely proportional to dG/9N, the partial derivative
of the optical gain G with respect to carrier number N. At low
temperatures 3G/dN vanishes because the states are fully occupied and Ce
therefore tends to infinity. This implies that pump fluctuations get short-
circuited and are unconsequential at nonzero frequencies. But the laser
can oscillate stably only as a result of gain compression, e.g., SHB.

In the equivallent circuit the intrinsic noise sources are represented

by two independent voltage sources whose spectral densities are

independent of SHB [6]. One of these sources (ve) represents dipole noise
while the other (va) represents vacuum fluctuations. Since the total
resistance of the circuit is equal to the SHB parameter f, the electrical
current (AQ/Q) representing amplitude noise vanishes in the large-f
limit. Complete quicting of the light beam is then expected at f= 0, as
indicated earlier, but statistical fluctuations of the gain are not considered
in this equivallent circuit.

Laser oscillator noise sources are described in Section 2. The
population inversion factor is evaluated in Section 3 for semiconductors.
Amplitude noise of an optically pumped semiconductor laser at T = OK is
derived in Section 4. It is here essential that the optical gain depend on
photon rate, perhaps because of SHB. Nonzero temperatures are
considered in Section 5. Our conclusion in Section 6 is that
semiconductors under intense optical pumping should be able to generate
light with fluctuations at approximately half the SNL at moderate
baseband frequencies.

Appendix A explains the physical origin of the intrinsic noise
sources, and Appendix B the nature of the gain statistical fluctuations.
Appendix C gives a classical derivation of 3-level laser amplitude noise.

Let us clarify our notation. Particle rates (number of particles
emitted or absorbed per unit time) such as the output photon rate Q(t)
consist of an average part <Q> and a fluctuation AQ(t) of zero mean.
Brackets indicating time-average values are omitted when no confusion

may occur, The quantity

X = <Q>1 Splf) (n



where 5a¢ denotes the double-sided spectenl density of AQ and { the
baseband frequency, is unity at the SNL. We will denote by q(t) the
intrinsic noise source, a white (i.e., flat spectrum) random function of
time. The measured noise AQ expresses the system response to intrinsic
noise sources relating to stimulated emission and absorption, as well as to
pump and spontaneous-carrier-recombination fluctuations. For particle
numbers, such as the photon number m, we also consider an average part
<m> and a zero mean fluctuation Am. In Appendix C statistical
fluctuations are denoted by 8 to distinguish them from total fluctuation A.

A normalized baseband frequency
Q = f/f,, fo = 1/ 25ty (2)

is defined, where tp denotes the cavity photon lifetime and f, the cold-

cavity linewidth.
2 LASER OSCILLATOR NOISE SOURCES

.Laser action takes place between two levels separated in energy
approximately by hv (where h denotes Planck's constant and v the
oscillation frequency) called respectively "emitting" (upper) level and
"absorbing" (lower) level. The rate at which electrons are injected in the
emitting level or extracted from the absorbing level is denoted by J, the
spontaneous decay rate by S and the net rate of photon emission in the
oscillating mode by R.

In the steady-state

d> - <S> =<R>= <Q> (3)

if the internal optical losses are neglected.

Let us now consider in succession relations applicable to the optical
cavity, to the (linear) absorber and to the emitter. The rate dm/dt at
which the photon number m increases is the difference between the rate R
at which photons enter the cavity and the rate Q at which photons leave

the cavity (and eventually get absorbed in the detector)

dm/dt=R-Q ()

On the average, <R> = <Q> as given in Eq.(3). The fluctuating part of
Eq.(4a) reads

J Q Am/ty =AR - AQ e

if we introduce the normalized frequency Q defined in Eq.(2) and assume
an exp(j 2x f t) time dependence.

The absorber of radiation (e.g., a detector) is linear and cold. It may
be viewed as a large collection of atoms, essentially all of them in the
ground state. Only a comparatively insignificant number of atoms get
excited under the influence of incoming light and, eventually, decay

spontaneously to the ground state. Accordingly

Q:I"ll.‘j'tp'l—q

I'he first term on the right-hand-side of Eq.(5a) expresses a deterministic
linear relation between the absorbed photon rate Q and the photon

number m while q(t) is an intrinsic noise term. Separating the average

part from the fluctuating part we obtain

<Q> = <m>/y, (5b)
and

AQ=Am/p +q - (5¢)
$q=Q (3d)

Equation (5d), where "Q" stands for the average value <Q>, asserts that
the intrinsic noise term q(t) fluctuates at the SNL. A detailed discussion of
this key point is in Appendix A. ‘

Expressions relating to the emitting element are analogous to Eq.(5).
But there are now atoms in both the emitting and the absorbing states.
Accardingly, there is a stimulated emission rate Re and a stimulated
absorption rate R,, the net rate R being the difference between the two,
These rates are the sums of deterministic terms, proportional to the
photon number m (neglecting unity compared with m, which is of the

order of 1000) and intrinsic fluctuations, according to
Re=Gem + re (6a)

Ra=Gam+ 1, (6b)

Se=Rs, Sp=Rs (6e)
RZRe—Rasz+r- GEGe“Ga. [=Te-ry (6d)

Because the re(t) and ra(t) processes are independent, the spectral
density of r is

Sr=Re+Ra 5(2 np‘lJR (66)

- 5 . - .
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= / 3
np = Re /(R - Ry) (6

and R, Re and R, are here understood as average values. The population-
inversion factor (or Spontaneous-emission factor) np in Eq.(6f) is unity
when the population inversion is complete, i.c., when R, =( Detailed

expressions for np are given in the next section.

3 POPULATION INVERSION AND SHB FACTORS

I e .
n the present section all the quantities considered are understood as

average values, i.e., noise is not considered.

Consider first 2-level atoms. If there are on the average ne atoms ip

i a— .
he emitting state and fla atoms in the absorbing state in the optical cavity
L]



m

the stimulated emission and absorption rates are proportional to these

numbers, respectively, that is
Re=A ne m, Ra=Angm (7)

where A is a constant (the same constant A applies to stimulated emission

and to stimulated absorption). Equation (6f) thus reads
np = Ne/(Ne - Na) (8)

In semiconductors the situation is more complicated. Each level pair
corresponding to the same electronic momentum (one level in the
conduction band and one in the valence band) is analogous to a 2-level
atom. But as a result of Pauli's exclusion principle that prevents two
electrons from occupying the same state (assuming’ that the spin
degeneracy has been lifted), the collection of these "atoms" exhibits a
large spread in energy spacings. Only one per-cent of them,
approximately, has the energy spacing appropriate for interaction with
the optical field at frequency v, namely hv to within approximately
h/2mt;, where T; denotes the intraband scattering time, of the order of 0.1
ps. If we denote by no the number of interacting states and by N the total
carrier number, we have no << N. We are presently concerned with these
no interacting states. The complication alluded to earlier stems from the
fact that both levels of a pair may be unoccupied or both occupied, a
situation that does not normally occur with atoms. These level pairs are
optically inactive but the latter kind contributes to the total electron

number, and therefore to the carrier dynamics,

Let fe and fy denote the probability of occupancy of the emitting and
absorbing states, respectively. The average values of ne and na are

respectively
ne = no fc, ny =ng fy &)

Assuming that the occupation of the emitting and absorbing levels

are independent processes

Re=Angfc(l-fy)ym, Ra=Angfy(l-f)m (10a)
R=Re-Ra=Gm (10b)
G=A No (rc = f\r) (IGC)

The general expression in Eq.(6f) for the population inversion factor

reads now
np = Re /(Re - Ry ) = fel1- 1) [(fe - fy) (1la)

From now on we consider for simplicity symmetrical bands. Then fy

=1 - fe and Eq.(11a) reads
np = f2/(2f.-1) (11b)

Net gain requires that fc be larger than 1/2, and thus np is positive.

T ——

A low and moderate optical powers the carners are i thermal
equilibrium within their respective bands and the probability fg 1s given
by Fermi's statistics. It increases monotonically as a function of the total
carrier number N, and eventually reaches the value unity.

At high power density, the thermal equilibrium condition no longer
holds. f¢ then depends not only on N but also on the rate at which
electrons and holes recombine (SHB). This recombination rate is
approximately equal to the photon generation rate R if one neglects
spontaneous recombination of interacting carriers. The recombination
rate per state is therefore R/no.

Within the relaxation-time approximation, the probability f. obeys

an equation of the form

dfJdt = (feo - o)/t - Ring (12a)
where fgo is the thermal equilibrium value of fe and 7 is the intraband
relaxation time. Because the intraband scattering time is of the order of
0.1 ps, the adiabatic approximation that amounts to neglecting dfc/dt is
applicable.

At low temperatures f., is unity and Eq.(12a) thus reads
fe= 1 -7 R/ng (12b)
The optical gain is from Eq.(10c) and Eq.(12b)

GR)=An, 2fc-1)=An,-2A TR (13)

I'he optical gain G no longer depends on N because the state is fully
occupied at low optical power, but it depends on R because of SHB.

It follows from Eq.(13) that the spectral-hole-burning parameter
B =- (R/G)dG/dR =2 A i R/G (14a)
can be written after rearranging using Eq.(13)
B =2(1-Ff)(2fc-1) (14b)

This SHB parameter goes to infinity as fc approaches 1/2.

We are now in position to treat semiconductor laser noise at T = 0K.
4 COLD SEMICONDUCTOR

As we discussed carlier, at low temperatures and for low optical
fields, the relevant states in the conduction band of pumped
semiconductors are filled (occupation probability fo = feo= 1) and the
relevant states in the valence band are empty (occupation probability fy =
fvo = 0). Accordingly, the optical gain is independent of the carrier
number N as long as N exceeds some critical value. (See Fig. 2 without
the spectral hole). Oscillation stability is ensured by the decrease of f; and
increase of fy = 1 - f. as the optical power increases, which entail a
decreasing gain. This is the SHB effect represented in Fig.2. Because the
intraband scattering times are very small, less than | ps even at low
temperatures, this effect can be considered instantancous as far as the

dynamics is concerned.



Constdering that G depends on 1 according 1o g (1Y), the steady

state oscillation condition in Eq.(3) is explicitly

G(R) = L/tp (15a)
and
J-Nfs=R (15b)

where 1 denotes the spontaneous recombination lifetime. Equation (15a)
can be solved for R. The value of N then follows from Eq.(15b) if the
pump rate J is known.

Let us now go back to the noise problem and restore the intrinsic

noise term. Equation (6d) reads

R=G(R)m+r (16)

with G(R) given in Eq.(13), and the spectral density of r in Eq.(6e) and
Eq.(11b).

We here implicitly assume that the optical gain G is a deterministic
function of R. It should not be forgotten, however, that fc represents the

probability that a state is occupied. The state occupency fluctuates as a

function of time with vanance f; (1 - f; ), a well-known result. For the
time being, however, we proceed with Eq.(16) as it stands.

To first order, Eq.(16) reads

(1+B)AR=Am/tp + ¢ (17)

B —————

if we introduce the SHB parameter f§ according to Eq.(14a) and the

steady-state conditions are used.

Eliminating Am from Eqs.(4b), (5¢) and (17) we obtain the output

photon rate fluctuation

AQ ={r+ [j Q1 +p)-11q}/[j 1 + B) + B (18)

which is here expressed as a weighted sum of the intrinsic noise terms r(t)
and q(t). Note that the pump fluctuations, if any, do not enterin Eq.(18).
This special situation holds only at T = 0 K and Q = 0.

Because the noise sources q (vacuum fluctuation) and r (dipole noise)
are independent and have the spectral densities given in Eq.(5d) and
Eqs.(6¢) and (11b), respectively, the normalized spectral density of AQ
reads from Eq.(18)

X=<Q>!Sp00=1+@2np/p2- D/[1+ (1 + /P2 Q2 (19)

The population inversion factor np is expressed in term of the occupation
probability f¢ in Eq.(11b). The SHB parameter {3 is expressed in terms of
fe in Eq.(14b). Thus the noise spectrum X(f) depends only here on the f¢
value.

When the frequency tends to zero, the value X = 2 np/B2 is
approached (but X jumps to unity at 2 = 0). It follows from Eq.(19) that
light is amplitude-squeeczed (i.e., X < 1) at small (but nonzero)

frequencies when

p2>2np (20)

i.e., fc <0.7.

For a typical vertical cavity laser diode we estimate [11] that
B =2 Pout 21)

where the intraband scattering time 7t is expressed in ps and the total
output power Pyt is expressed in mW. In that case amplitude squeezing
would occur for 7> 1 ps at a power of 1.6 mW.

Note that as B goes to infinity, so does np, but ny/B2 nevertheless
vanishes. In that limit X(f) is the reciprocal of 1+(fo/)2 . X thus tends to
zero at low nonzero frequencies. The variation of X as a function of f for
B=0and B =5 is shown in Fig. 3 as dotted lines.

The statistical fluctuations of the optical gain, not considered so far,

introduce a floor at half the SNL level (see Appendix B).
5 WARM SEMICONDUCTOR

At nonzero temperatures the optical gain G(N, R) depends on both

the carrier number N and the photon rate R, and Eq.(17) generalizes to
(1 +B) AR =P AN/tp + Amitp + 1 (22)
where the P-parameter

P=gm/N (23a)

—M

is proportional to the optical power, and
g = (N/G) aG/aN, p = - (R/G) 6G/aR (23b)

The differential gain g and P vanish at T = 0K as discussed in the

previous section. At room temperature g is of the order of 4 and P is of
the order of 0.01 [11].

We now need the carrier rate equation
dN/dt=J-S-R = JjQ AN/tp = AJ - AS - AR (24a)

Say=1J (24b)

because the pump J is supposed to fluctuate at the SNL.

The radiative spontaneous recombination rate is of the form
S=Nhs+s = AS=0cANhp+s, (25a)
S5¢=8; a=Tplts (25h)

The method of calculation of X proceeds as in the previous section.

After remarkable simplifications we obtain
X =1+ No/Dg (26a)

No=(R2+02) (2ny-p2)+2P2S/Q-2Pop (26b)



Do=QZ(P+P)2+[Q2(1+B)-P2+2Pa (B +Q2(1+B))

+ 02 [B2 + Q2(1 + B)2) (26c)
which is the analytical form corresponding to the schematic in [6]. It
coincides with Eq.(19) in the limit g = S = 0. The expression for np in
Eq.(11b) valid at T = OK must be increment by approximately g/2 at
room temperature [11].

The variation of X in Eq.(26) is shown in Fig.(3) as a function of Q
= f/f, as plain lines when sponraneous recombination is peglected (S = 0)
with g = 1, m/N = 0.6, and two values of §§, namely 0 and 5.

The influence of a relative spontaneous recombination rate S/Q =
025 (i.e., 20% of the created electron-hole pairs recombine
spontaneously) is illustrated in Fig.3 as dashed lines (same parameters as
above). These curves (and others not shown) indicate that spontaneous
carrier recombination (SCR) does not deteriorate much sqﬁcezing as long
as f remains large compared with unity. Squeezing in fact now occurs
also at zero frequency. The reason is that SCR tends to clamp the carrier
number, while the intrinsic fluctuations that it introduces play only a
minor role. Here again statistical gain fluctuations entails a level floor at

approximately half the SNL.
6 CONCLUSION
We have shown theoretically that amplitude noise from strongly

optically-pumped cold semiconductor can be squeezed down to

approximately half the shot noise level, as a result of spectral-hole

burning. Statistical fluctuations of the optical gain generate terms that are
of the same order as spectral-hole-burning terms. Statistical fluctuations
should also be accounted for in semiconductor linewidth calculations at
high optical power. Moderate spontaneous-carrier-recombination far
from being detrimental to amplitude noise enables squeezing to occur at
zero frequency. These results, if confirmed experimentally, would be of
practical importance for the measurements of small attenuations and
sensors, because many semiconductors cannot be electrically pumped.
Optically pumped semiconductor can be given a geometry
appropriate to low-loss whispering-gallery modes of resonance.
Experiments on whispering-gallery modes have been reported in the
microwave [12] and optical [13] ranges. In order to verify that light
fluctuations are squeezed high-quantum-efficiency detectors that collect
essentially all the emitted light are required. Alternatively, a dual-
detector system (Hanburry-Brown and Twiss type experiment) can be

employed.
APPENDIX A: BASIC NOISE SOURCE.

Well-above threshold 2-level-atoms are considered in this Appendix,
with fluctuations small compared with the steady-state values.

Theories that ignore the noncommuting character of the operators
representing light may be erroneous. The phasor model ( mewhat
related to normally-ordered Quantum theories, such as the one employed
in [5]) is accurate only in special circumstances, as we hope to clarify in a
future paper. But the classical theory employed in this paper (that

ressembles symmetrically-ordered Quantum theories) appears to be exact

_-_“-_—-
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as long as the particle number is large. These (wo commuting-number
theories rest on vastly different concepts: the phasor theory attributes
laser noise to spontaneous emission, while the classical theory in [8], [9]
attributes -laser noise to quantum jumps [14] resulting from stimulated
emission.

The classical theory of laser noise is based on a unique intuitive

principle: atoms submitted to a constant-amplitude classical field are

independent of each other. Emitters and absorbers are treated in a

completely symmetrical manner, as was done by Lax [10] (however the
nonlinearities are not adequately handled in Lax's paper). The fact that
the emitter properties are usually more complicated than those of the
detector is of no fundamental significance. With this symmetrical view
spontaneous emission is clearly not relevant to laser noise since
spontaneous absorption never occurs.

Let us thus consider atoms in the ground-state with nonoverlapping
wavefunctions submitted to a classical field of prescribed hmplitude. We
are asserting that the atoms in that special (and perhaps unrealizable)
situation, are independent of each other because they cannot
"communicate", so-to-speak, with one another through induced field
fluctuations. To wit, the instants at which electrons jump from the ground
state to the upper state as a result of stimulated absorption (resp.
emission) are independent. This assertion is reminiscent of Glauber's
observation [15] that classically prescribed electrical currents radiate light
in the coherent state. In fact, our formalism leads readily to Glauber's
observation.

The current induced by the electron motion thus fluctuates at the

shot-noise level. For the one-photon processes considered in the main

_._.“._

text, this implies that the (absorbed or emitted) photon rate fluctuates at
the SNL, i.e., the spectral density of the intrinsic fluctuations denoted r(t)

or q(t) in the main text are equal to the average rates:

Sq = <Q> (Al)

More generally, complex intrinsic rates q = q' + i q* can be defined.
Applying the above underlined principle to detuned atoms one finds that
q' and q" are independent and fluctuate at the SNL. For k-photon
processes [16], using again the same argument, one finds that the spectral

densities of q' and q" are multiplied by k

Sq':Sq"=k<Q> (Al)

Two-photon absorption (k = 2) is relevant to the discussion in the
main text because this mechanism may occur in some lasers and has
effects similar to spectral-hole-burning. The detailed discussion however

is not given here.

APPENDIX B: STATISTICAL GAIN FLUCTUATIONS

Consider first the conduction band and denote by f the probability
that a particular interacting state is occupied by an electron. If x is a
random variable equal to 1 with probability fc and 0 with probability 1 -
fc obviously the mean of x is equal f; and the variance of x is fe (1 - fo).
Because we are interested in the limit in which f. is approaching 1/2 from

above, this value is considered from now on.

J



It is quite plausible that the instants of jump of x from | to 0 or
from 0 to 1 are independent, i.e., Poisson's distributed. Let the average
rate of this underlying point process be denoted by A. The spectrum of
the telegraphic process x(t) is Lorentzian [17] with a low frequency limit
equal to 1/4A.This result is obtained by rescaling Eq.(9.28) of [17], taking
the Fourier transform, and setting the frequency equal to zero. In the
present context, "low frequency" refers to frequencies much smaller than
the reciprocal of the intraband scattering time, i.e., below approximately
100 GHz.

Assuming symmetrical conduction and valence bands, the
occupation of the valence band state is a process y(t) independent of x(t)
but with the same statistics. The spectral density of z(t) = x(t) - y(t) is
therefore equal to 1/2).

Because we are interested here in statistical ﬂuctqations only, the
total carrier number N and the recombination rate R are considered
constant, and the probability fc is independent of time. The contribution
of a single level pair to the optical gain is of the form: A z(t), with A a
constant. Assuming that the occupations of the n, interacting states are
independent of one another, the spectral-density of the optical gain is n,

times the single level-pair contribution, i.e.,
S8G = no AZ /2 (B1)

where & is used to denote statistical fluctuations.
It remains to relate the average rate A of the underlying Poisson's
process to the relaxation time 7; introduced in the main text. Equation

(12a) with dfe/dt = 0 defines 7 as the ratio of small changes §<x> of the

mean state occupation and small changes 6p = 6R/ng of the electron
removal rate (resulting in the present context from stimulated carrier
recombination). Going back to the telegraphic process, suppose that x is
forced to drop from 1 to 0 once every T =1/8p seconds. The average
duration of a x = | state is 1/A. One of these x=1 states is cut by half on
the average over the T-period. It follows that the mean occupation drops

by d<x> = [/(2AT). We thus end up with the relation
2h =l (B2)

which is related to the fluctuation-regression theorem.
Thus G in Eq.(16) is not a deterministic function of R. It suffers a
fluctuation 8G that amounts to adding up a term 8G m to the intrinsic

fluctuation r(t). Equivalently one should add to 2np the term
m2 SsG /R =no AZ i m2/R = (1 - f)/(2 fe- 1)2 (B4)

where we have used the expression for G(R) in Eq.(13), and the steady-
state oscillation condition: R = G m. Let us recall that Eq.(B4) is valid
when f¢ is near 1/2. According to Eq.(19) of the main text, as fe is
approaching the limiting value of 1/2, the photon noise relative to shot
noise, X, also approaches 1/2, as is the case for 3-level atoms [5] (see

Appendix C).

R

APPENDIX C: 3-LEVEL ATOMS

The authors in (5] considered the independent injection of 3-level
atoms in the emitting state into a single-mode optical cavity. The
absorbing state is supposed to decay to the ground state by spontaneous
emission at an average rate <K> = nu/ta. the other assumptions and
notations are as in the main text. Such 3-level atom lasers appear to be
similar to semiconductor lasers with spectral-hole burning. The third
level can indeed be likened to the semiconductor noninteracting states,
lumped into a single level. Amplitude noise turnsout to be rather similar.

Because the result in Eq.(5.13) of [5] is obtained from a difficult
Quantum theory that employs normally-ordered operators, it is useful to
show that the result can be recovered from the classical noise theory.

The system is not closed and equations must be written for both n,

and ny according to

dne/dt=J - R, dna/dt=R - K, dm/dt=R - Q (CD

where the pump fluctuation AJ is at the SNL, and the rates R, K and Q

are given by
R=A(ne-nmy) m+r, K=ny/t,+k, Q=m/p +q (C2)
where A is a constant.

The spectral densities of the (independent) noise sources AJ, k, q and

r are respectively

SAJ=Sk=8q=Q (C3a)
Sr=(1+2ATtarpQ Q (C3b)

where the steady-state conditions have been used to evaluate the
population-inversion factor np from Eq.(6f). Let us recall that hv <Q>
represents the output optical power. At large power the two working-
level populations tend to equalize and the population-inversion factor goes
to infinity. Nevertheless the contribution of r vanishes in that limit. A
similar observation was made in the main text for semiconductors.

Simple algebra gives the photon noise from the above equations. In

the large power limit we obtain
X=QlSag=1-(1/2) {(1+Q2)[ 1+ (tp/27)2/22}-1 (Ch)

an expression that coincides with Eq.(5.13) of [5] but is written here in a
simpler form. The minimum value of X, namely 0.5, is comparable to the

one that one can achieve with semiconductors.
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CAPTIONS

Figure 1

Electrical model for semiconductor laser noise. The detector is
represented by a 1 ohms resistance in series with a noise source va
representing vacuum fluctuations. The active element is represented by a
resistance of - (I + PB) ohms, where p is the spectral-hole-burning
parameter, in series with a noise source ve representing dipole noise
whose spectral density is independent of B. At low temperatures g = 0.
The capacitance Cq is infinite and may be replaced by a short circuit at
any nonzero frequency. The capacitance Cc, equal to the photon lifetime,
is negligible in comparison. Amplitude noise vanishes in the limit f — oo,

irrespectively of the pump fluctuations.

Figure 2

Schematic picture of optical gain as a function of frequency at low
temperature. The dip in the gain curve at the oscillation frequency vo
represents the spectral-hole-burning effect (vg is the band gap
frequency). In the limit considered the optical gain depends on the
emitted photon rate R but not on carrier number N, as the curve labeled

N + dN indicates.

Figure 3

Variation of amplitude noise normalized to the shot-noise-level, X as a
function of f/fy where f, denotes the cold cavity linewidth. Two values of
the spectral-hole-burning parameter B (proportional to the square of the

intraband scattering time and to optical power) are considered: (0 and 5.

h

-

Dotted lines apply to cold semiconductors. Plain lines apply to room
temperature operation, with g = | and a photon-to-electron number ratio
m/N = 0.6, spontaneous recombination being neglected. Dashed lines:
same as plain lines but with spontaneous recombination: S/Q = 0.25.
Statistical gain fluctuations contribute a floor at half the SNL, not shown

in the figure.
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