Optical and Quantum Electronics 12 (1980) 187-191

Review .
Optical waveguide theory
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This report summarizes the activites at the 4th International Workshop on Optical Waveguide Theory,
held at Leuwenhorst Holland on 13—16 September 1979.

1. Introduction

Because the Optical Communication Conference is
mainly concerned with applications it is most use-
ful for research workers in the theory of optical
propagation to be permitted to discuss separately
the most advanced concepts and results, and
subsequently share their knowledge and interest
with the fibre optics community. The fourth
workshop, which was held in Leuwenhorst,
Holland, before the Optical Communication Con-
ference of Amsterdam, fulfilled just that need, as
did previous workshops. (For a report of the 1978
workshop see [1]).

The 4th workshop was organized by Professors
Blok, Felsen and Unger. Mr Beekhuizen made the
administrative arrangements. [t was attended by
thirty-two people coming from ten countries.
There were five sessions entitled as follows:

1, Realistic modelling of fibres A (Marcuse, Mid-
winter); [1, Basic problems in optical waveguide
theory (Ulrich, Snyder); [T, Numerical, asymp-
totic and ray methods (Felsen, Blok); IV, Statisti-
cal aspects (Arnaud); V, Realistic modelling of
fibres B (Marcuse, Midwinter). As you can see,
realism was there from the beginning to the end!

I will present the results of the workshop, not
in the order shown above, but according to
potential applications, namely: multimode fibres;
monomode fibres; and integrated optics. To be
sure some theories and techniques are general
enough to fit under many headings, but it seems
appropriate to discuss asymptotic techniques, for
example, under the heading *multimode fibres with
moderate F-values’, because, on the one hand, the

accuracy of uniform asymptotic techniques is
questionable for monomode fibres, while, on the
other hand, more conventional ray (or WKB)
techniques appear to be sufficiently accurate for
highly multimoded fibres (large ¥-numbers). In
the following report, the names of authors actually
present at the workshop are given in bold letters.

2. Multimoded fibres

Let us consider circularly symmetric multimode
fibres. I will discuss first ‘exact’” numerical methods,
since it is against such techniques that approximate
analytical forms are best judged. The exact Max-
well equations can be written in the form of a
radial differential equation for the By, Hy, E,, H,
field components that are continuous at the inter-
faces (Block [2, 3], Di Yita [4]). A quite different
formulation, called the propagating beam method
was proposed by Fleck [5] (so far in scalar form
only). It consists of evaluating the transformation
of some incident beam along the guide axis (z),
with the help of a parabolic wave equation. A
Fourier transform with respect to z provides the
propagation constants and time delays of the
modes, with surprisingly good accuracy.

Ray techniques remain, however, simpler and
more economical. They are applicable, except
perhaps for near-to-cut-off modes and in the case
of fast radial perturbations of the index profile;
steps or narrow index dips, when the V-number
exceeds about 20. The advantage of ray techniques,
whenever applicable, is to lead to analytical
formulas and to provide pleasant visual aids. This
subject was reviewed by Marcuse [6]. The newer

0306—8919/80/030187-05502.50/0  © 1980 Chapman and Hall Ltd. 187



J. Arnaud

analyses (Geckeler [7]) take into account a
possible non-linearity in the relationship between
dn/dX and n as the dopant concentration varies
(nonlinear dispersion). The theory says that, what-
ever the dispersion may be (linear or not), there is
always an index profile that equalizes the times of
flight for all paraxial rays. But this optimum pro-
file usually varies with the carrier wavelength. A
number of proposals have been made to synthesize
fibres that would be good over a broad frequency
range. Some experimental verifications have been
reported (see [6]) but some uncertainty remains.
This is perhaps because there is little agreement
between the measurements available today, as far
as dispersion is concerned [8]. This situation is
compounded (or perhaps explained) by the stress-
induced effects reported by Scherer [9].

Scherer’s calculations of the thermal history of
fibres with GeO, doping indicate changes of index
of the order of 107, and stress induced anisotropy
(n, versus n,) of the order of 107, These effects
are small but not negligible.

Midwinter expressed the view that, on the one
hand, multimode fibres may well be superseded in
the near future by monomode fibres for trans-
mission capacities exceeding 140 Mbits™, and
on the other hand, economics operate against
sophisticated fabrication techniques. The follow-
ing question is therefore put to us: Is it worth
trying to determine an optimum doping profile,
with a bandwidth of, say, 10 GHz km over a broad
wavelength range, or should we be happy with
what we presently have, that is, roughly 0.5 GHz km
from 0.8 to 1.2 um? It should be noted that if
fibres with very high germania content (or even
pure germania) in the core are made according to
some recent proposals, one must be very careful
about dispersion properties, if we simply want
to get decent bandwidths.

Non-circularities in the profiles would not be
bad in themselves if they were carefully controlled
(Pask [10]). At the moment, however, they appear
as accidental uncontrolled departures from a
nominally circular shape. All exact numerical tech-
niques available today that can solve the problem
are very time-consuming. It is easy enough to trace
rays, but one does not know in general how to
relate these rays to modal propagation constants of
given mode numbers. For most profiles (e.g., for
‘stadium’ contour step-index fibres) rays exhibit
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stochastic motion, and fill up some volume of
phase-space. Nevertheless Scheggi [11-13] has
shown that in the special case where n(x, y) is a
constant along a set of confocal ellipses, one can
define caustics. These caustics are in general non-
confocal ellipses or hyperbolae except in the

case of step-index fibres where the caustics are
confocal ellipses or hyperbolas. An interesting
approach to multimode non-circularly symmetric
(and non-separable ) index profiles is that based on
adiabatic invariants (Solov’ev [14]). This approach
however, was not discussed at the workshop.

An interesting issue had been raised by Peter-
mann at the previous workshop. Petermann gave a
ray optics argument that suggests that slightly
leaky rays should leak out very quickly for near
square-law fibres® that depart, even slightly, from
circular symmetry. This conclusion is now sup-
ported and refined by the ray optics calculations
of Adams and others [15, 17], Jacobsen and
Scheggi [12]. The actual loss. however, has not
been calculated.

The problem of axial non-uniformities is
important since it explains the cabling loss and the
near-square-root of length dependence of pulse
broadening for long fibres (Personick). It was
shown recently that ray equations give results
identical to the power-coupled-mode equations in
the continuum limit. However, as it was emphasized
at the workshop (Arnaud [17], Di Vita [18]) and
glsewhere (Shatrov [19]), one must use two mode
numbers, radial and azimuthal, and not just one
‘principal’ mode number, because the modes of
fibres with a power-law profile are not degenerate
if @ # 2, and degenerate modes, if any, do not
carry the same optical power. In fact, simple exact
expressions were reported. For a step-index fibre
with a uniform microbending spectrum, Marcuse’s
factor R?L is found [17] to be precisely 0.74 dB.
Note that, for axial laser excitation, the pulse
width initially increases in proportion to the
square of length.

When the fibre profile changes slowly with z, it
is permissible to use the so-called ‘adiabatic’
approximation and to integrate losses and times
of flight along each individual mode. A related but

*This effect is associated with the degeneracy that takes
place whenever the azimuthal ray period divided by = is
the ratio of two integers. For power-law index profiles,
the critical values of « are 0.25, 2, 7, etc.
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more difficult problem is that of different fibres
jointed together. Here we must in addition take
into account the mode coupling at the joints.
Noticeable improvements in bandwidth with
respect to naive expectations were reported by

Eve, Clarricoats [20] and Someda [21]. Midwinter,
quoting Olshansky and Keck’s work, suggested that

individual fibres be characterized by the surface:
times of flight versus two numbers easily accessible
to measurement, such as the radius of injection
and the lateral angle, rather than just by the 3 dB-
bandwidth, as is usually done.

Some of the fibre defects can be explained by
scattering. Yip [22] reported improved formulae
for dipole radiation into weakly guiding fibres.
The modal noise and other coherent optics effects
were discussed, but, in my opinion, much too
briefly.

It was noted by Di Vita [23] that in Barnoski
time-domain reflectometry, irregularities in
Rayleigh scattering are virtually eliminated when
one takes the ratio of the reflections (at the same
z) from each fibre end.

One is sometimes tempted to reduce the V-
number of a fibre in order to increase its band-
width and yet, have a core radius that makes
splicing somewhat easier than with monomode
fibres. How low can the V-number be? One
possible limitation to moderate or low V-number
fibres is the existence of near-to-cut-off modes,
because such modes usually have group delays
that are very different from those of the far-
from-cut-off modes. The uniform asymptotic
series proposed by Felsen [1] and improved by
Arnold, Jacobsen, and Hashimoto appear to be
excellent tools to analyse such modes. Jacobsen
has shown how the error in such series, error which is

inherent to asymptotic expansions, can be reduced,

and be quite small in many practical cases (for
references, see for example, Ikuno [24].

In the preceding discussion, all polarization
effects were ignored. It is now recognized that
the so-called ‘LP modes’ are simply scalar modes
to which an arbitrarily chosen linear and uniform
polarization is added, and that these LP modes are
not the true modes of the fibre, even in the weakly
guiding approximation. Snyder’s [25] results
exhibit the true modes of weakly guiding fibres,
to the first order in /A, V being held fixed. For
arbitrary non-degenerate n(x, ¥) profiles, the

polarization for the two states associated with a
given scalar mode are linear, uniform and mutually
orthogonal.* The directions of polarization may
be different for different modes of the same fibre.
They are fixed only if the fibre profile exhibits a
symmetry, e.g., for elliptical shapes. Because of
degeneracy, the situation for circularly symmetric
profiles is, in a sense, more complicated. It
simplifies, however, if the fields are assumed to
follow an exponential azimuthal behaviour (rather
than sine and cosine) because, with that notation,
the polarization is a function of radius only. In the
limit of large F-numbers it is predicted in [26]
that the polarization states of the true modes are
almost circular. It is not clear whether Snyder’s
theory agrees with that conclusion.

3. Monomode fibres
Monomode fibres may well be the next generation
of high capacity fibres, since their microbending
and splicing problems do not appear to be as
severe as was originally thought and since good
lasers are coming up that are monomode at least
in the transverse direction. For arbitrary cross-
sections (some people say ‘crazy shapes’), the
finite element method reported by Lagasse [27]
and others [28] seems quite appropriate. But the
integral equation methods discussed by Blok are
also applicable. Snyder discussed how the proper-
ties of many graded-index monomode fibres could
be understood in terms of equivalent step-index
fibres of appropriate radius and V-value. White
analysed the dispersion properties of such fibres.
Stewart’s refracted ray technique, although
initially intended for multimode fibres, seems to
be applicable to monomode fibres, with decent
resolution.

For multimode fibres, the microbending loss
is, to the first order, wavelength independent, but
it strongly increases with wavelength for mono-
mode fibres. By fitting the theoretical and
experimental curves, Suematsu [29] found that
the curvature power spectrum is close to Gaussian
and used the result to predict the response of multi-
mode fibres with the same outer diameter and

*This conclusion follows simply from the fact that (a) the
transverse field is linearly polarized, and (b) one must be
able to generate scalar modes with arbitrary polarization
from a linear combination of the true modes, in the limit
considered.
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similarly cabled. It now appears (Dyott [30]) that
for small core radii, polarization can be maintained
in single mode fibres over long lengths by shape
anisotropy, that is, by strong ellipticities in shape.
Otherwise, strain-induced effects seem essential
(Stolen eral [31]). It is possible also to

fabricate fibres with very low birefringence [32]).
In any event, the field of monomode fibres
appears to remain opened for refined and useful
theoretical analyses [33-35].

4. Integrated optics

A new class of waveguides was introduced a few
years ago, in which some modes can leak into slab
modes. Oliner analysed the rib guide and found
that only the quasi-TM mode survives, while the
TE wave leaks out, with calculable losses. The
application of these structures to injection lasers
is well known (Streifer). Geodesic lenses are be-
coming popular, and are actually used in ultrasonic
spectrum analysers. This class of lenses were re-
viewed by Righini [36, 37], while geodesic prisms
(cones) were discussed by Voges, and thin film
micro-optics by Kersten [38].

Last, but not least, beautiful experiments with
biperiodic gratings were presented by Ulrich. He
demonstrated that homogeneous (but anisotropic)
slabs of bi-periodic gratings provide focusing, and
also that incident beams get steered (directional
changes) as the optical wavelength varies.™ This all
comes from the peculiarities of the k,,k, curves of
biperiodic media. where k denotes the wave vector
of a space harmonic. The feeling was expressed at
the workshop that much more remains to be done
on the theoretical side in integrated (planar) optics
than on multimode optical fibres. A stronger
effort on the analysis of integrated optics com-
ponents would thus be justified if truly monomode
monopolarization fibres can be fabricated
economically as now seems to be the case. The
general concept of radiating modes with lossy sub-
strate may need clarification (Vassallo [40]).

5. Conclusions

To conclude, some theoretical puzzles have been
resolved, but we still have to look with a critical
mind at some of the approximations made in
earlier theories. We need also consider the uncer-

* A similar effect had been pointed out for microwave
beams in [39].
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tainty existing at present in dispersion measure-
ments and in the thermal history of the fibre be-
fore we can draw final conclusions. I would like
to emphasize that a good job has been done at
the 4th Workshop to evaluate and compare the
merits and drawbacks of various numerical and
analytical tools. The optical community should
certainly guide us as to the need for more refined
calculations on the basis of existing needs. But in
my opinion one must keep also an eye on possible
new breakthroughs in material studies; for example,
the discovery of materials with extremely low loss
or with odd dispersion properties, the feasibility
(and desirability) of fibres with strongly non-
circular geometries, and so on before discouraging
seemingly academic studies.

I will give the final word to Professor Felsen
who discussed (in verse) the ray against mode con-
troversy. His poem ends in this way:

‘The game is Science, laced with Art
There could not be a better start’.
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