Numerical Evaluation of the
Impulse Response of
Multimode Optical Fibers

J. A. Arnaud”

A numerical technique based on ray optics is presented that provides
the impulse response of multimode optical fibers having arbitrary
smooth index profiles and arbitrary material dispersion. The variation
of dn/dA, as a function of n when the dopant concentration varies is
obtained from Fleming!?) measurements on bulk samples. This tech-
nique is applied to germania-doped multimode fibers with power-law
profiles and various values of A = An/n. Previous results‘® are shown
to be invalid when A > 0.005. By successive approximations, optimum
profiles that minimize the impulse response widths for quasi-mono-
chromatic sources are found. For these optimum profiles, the quasi-
monochromatic root-mean-square (rms) impulse response width is
found to be of the order of 150 A*nsec/km, in agreement with a recent
analytical result,(®)

The transmission of information by means of optical pulses in glass fibers
is increasingly promising. Losses as low as 0.5 dB/km at A\, = 1.2 ym
have been reported.’”) These very low losses open the prospect of
repeater spacings as large as 50 km. For large repeater spacings, a para-
mount problem is the broadening of the optical pulses, even at mod-
erately low data rates. This is the problem we are addressing.

One key question in the design of optical fiber links—yet to be an-
swered—is whether it is more economical to use (1) single-mode lasers,
such as neodymium YAG lasers and single-mode fibers, (2) injection
lasers and multimode fibers with moderate values of A = An/n, or (3)
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surface light-emitting diodes (LEDs) and multimode fibers, preferably
with large A at wavelengths of the order of 1.2 pm.* LEDs operating in
that wavelength range have been reported.® A fourth alternative, which
is in a sense intermediate to (1), (2), and (3), is to use edge-emitting
LEDs and optical fibers that have a profile elongated in the plane of the
LED junction.f In the present paper, we shall discuss only the problem
of pulse broadening in multimode fibers. These fibers are presently easier
to splice and cable than monomode fibers. (For a theoretical comparison
of the microbending losses, see ref. 6.)

Numerical techniques for evaluating pulse broadening based on the
Maxwell equations™ are rigorous in principle, but very costly in terms
of computing time. Numerical techniques based on ray optics (WKB
approximation) are much more economical. They are accurate enough
for multimode fibers that have smooth profiles. Irrespective of the basic
equations used, it is essential to account for the fact that the ratio of the
local phase and group velocities varies within the fiber cross section. This
variation is called “inhomogeneous dispersion.”(®*) Because of inhomo-
geneous dispersion, the time of flight of pulses along a particular ray
trajectory is not proportional to the optical length of the ray, and optical-
length equalization does not ensure time-of-flight equalization. The prac-
tical importance of inhomogeneous dispersion in the design of graded-
index multimode fibers was first pointed out in 1975.¢* The basic
ray-optics equations that take inhomogeneous dispersion into account
were given the year before.”’™ It has also been shown®? how these
equations can be derived from wave optics, and how optimum profiles
can be generated that take inhomogeneous dispersion into account.

Let us briefly review a few known analytical results and explain the
reason for their inadequacy. One result'™ rests implicitly on the assump-
tion that ndn/d)\, is proportional to n* as the dopant concentration
varies. But as other recent measurements show, " this is usually not the

* Fibers with large A (e.g., with germania doping) are much less sensitive to
microbending loss than fibers with small A, and the coupling efficiency to spa-
tially incoherent sources, such as LEDs, is much better. However, for some
dopants, it is not practical to raise (or lower) the index much with respect to
that of pure silica. It can also be argued that if very low loss fibers can be fabri-
cated, as now appears to be the case, one can afford to have relatively large
coupling losses at the source. Therefore, the practical importance of large A
fibers is difficult to assess at the moment.

T Fibers with elongated (e.g., elliptical) profiles may be useful in conjunction with
edge-emitting LED sources and edge-receiving detectors, because the coherence
of the field is preserved in one plane and the amount of dopant material used is
minimized. Such profiles would also be less sensitive to microbends than round
fibers if the A and the mechanical deformations were identical.
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Fig. 1. Variation of § = —\ n(dn/d\,) as a function of n or n® for germania-

doped fibers, at A, = 0.9 and 1.06 pm from measurements(*) on bulk samples. The
accuracy on S is about =1%. Note that these curves exhibit large departures from
linearity.

case, except perhaps for fibers with very small A = An/n, typically
A < 0.005. (See Fig. 1.) A first-order perturbation method'*’ can
handle arbitrary variations of ndn/d\, with n* but it is restricted to
small departures of the index profile from a square-law profile. When the
class of materials used in the fiber exhibits large variations of dn/dA,,
the optimum profiles are far from square-law profiles and the first-order
perturbation method""*’ may not be accurate enough. Closed-form
second-order perturbation formulas can be obtained!'®’ that probably
give sufficiently accurate results, but the details of this improved formu-
lation have not been reported. Approximate analytical results are valu-
able because they help clarify our understanding of the relative impor-
tance of the physical phenomena involved. Before relying on approximate
formulas that are not supplied with error bounds, however, it is indis-
pensible to check them against results based on less restrictive assump-
tions, such as those presented here.

In the section on basic physics we shall recall a few essential physical
facts relative to the propagation of pulses of incoherent light in optical
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fibers. In the section on the characterization of the fiber material, mate-
rial characteristics, such as the refractive index n and the dispersion dn/
d\,, are defined. The numerical integration technique is presented in the
section on the evaluation of pulse broadening, with the mathematical
derivations relegated to an appendix. This numerical technique is applied
to germania-doped fibers in the section on numerical results, and the
optimum profiles are calculated. The nature and magnitude of the errors
involved in the scalar ray approximation are discussed in the final sec-
tion. Some of the results reported here have been given previously.

Basic Physics

The physics of optical fibers for communication have been reviewed. See,
for example, refs. 13 and 15. We shall recall here a few essential formu-
las that provide an order of magnitude of the effects considered. In order
to evaluate data rates with sufficient accuracy, numerical techniques such
as the one discussed in subsequent sections are indispensible,

The transmission capacity of a system (its “bit rate™) is determined
primarily by the width of the received pulse. It seems reasonable to
characterize the received pulse by its root-mean-square width o, as pro-
posed in ref. 16, where

o =A<t>r— <> (1a)
where, for any quantity a, such as ¢ or r*, we define
420 400
<a> = ] aP(tydt / f P(t)dt (1b)

P(t)in Eq. (1b) represents the received optical power P as a function of
time. As a rule of thumb, the maximum permissible bit rate can be taken
to be 1/4¢. For improved accuracy, one should feed the calculated
received pulse P(7) into an error rate computer program. Because, for
the kind of power densities usually considered, the fiber material is very
nearly linear, and because, for highly multimoded fibers, the usual ap-
proximations of space-time ray optics hold, the response of multimode
fibers can be assumed to be linear in power. Thus, if one knows the out-
put power P(t) when a brief optical pulse (simulating a § function) is
applied at the input of the fiber, the output power for an arbitrary input
pulse follows by convolution.

The two basic causes of pulse broadening in optical fibers are mate-
rial dispersion and ray (or modal) broadening. The nature of the mate-
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rial dispersion effect is best understood by considering a plane optical
wave propagating in a homogeneous medium, perhaps fused silica. The
optical wave is assumed to be modulated by a pulse of very small dura-
tion, of the order of 100 psec. If the optical source is monochromatic
(before modulation) the optical pulse broadening is negligible for all
practical purposes. However, some of the most attractive sources pres-
ently available have a broad spectral width, much broader than the
reciprocal of the pulse duration. For light-emitting diodes in particular,
the spectral width is of the order of 4% of the optical carrier frequency.
Because the group velocity in the material generally varies with the op-
tical frequency, some frequency components in the pulse arrive ahead
of others, causing the pulse to broaden. If ¥ (w) denotes the slab wave-
number, with k = (w/c)n, w/c = 27/, and X, denotes the free-space
wavelength, the transit time ¢ of a spectral component at « is the ratio
of the length traveled, L, and the group velocity u = dw/dk

w) = % K (a)
Thus, we have
) — 4 = 3”:£;°) L(w — w) (2b)

Within the linear approximation in Eq. (2b), the received pulse P(t) is
a replica of the source power spectrum @(w), with scale dt/dw =
(0%k/dw?*) L. The above conclusions are based on the assumption of in-
coherence of the frequency components of the source. Equation (2b)
suggests that we define a dimensionless material dispersion parameter

W dk N dn

K@~ n e 2
For a typical light-emitting diode with a junction at absolute tempera-

ture T, the optical spectrum can be approximated by a Gaussian

®P(w) = exp I:—— 21 (hm_;%]_wn)“] (4)

where © is Planck’s constant divided by 2=, K is Boltzmann’s constant,
and hw, is approximately the band-gap energy. Under the above ap-
proximation, the received pulse is Gaussian in shape. If T = 450°K, its
rms width is, from Egs. (2), (3), and (4)

o, (nsec/km) = 150M N\ (um) (5)
For fused silica at A, = 0.9 pm, for example, M = 0.012, Thus, accord-

M:
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ing to Eq. (5), the rms impulse response width associated with material
dispersion is 1.6 nsec/km. The above results are applicable approxi-
mately to graded-index fibers, although in general M is a function of
dopant concentration and therefore of radius, and some averaging takes
place. The averaging effect is particularly important at wavelengths of
the order of 1.2 to 1.4 um, where M may be positive for some dopant
concentrations and negative for others. This point will be discussed fur-
ther later.

Let us discuss ray (or modal) broadening. The carrier is assumed to
be monochromatic and modulated by a short pulse that approximates a
§ function (quasi-monochromatic short pulse). A multimode source,
such as a LED, excites many different rays. The time of flight of the
pulse along a particular ray is obtained by integrating along the ray
trajectory ds/u, where ds denotes the infinitesimal ray length and u =
dw/dk, the local group velocity. The refractive index of the cladding
sets a lower bound to the axial component of the wavevector (or propa-
gation constant) associated with the rays in the fiber. The dispersion of
the cladding material is irrelevant, within the ray approximation. Re-
placing the cladding material by another one having the same refractive
index n, at the carrier wavelength but a different dispersion dn,/d), may
have a considerable effect on the value of dA/d\,, where A = An/n is
the relative change of index in the fiber cross section, but it has no sig-
nificant influence on the impulse response of the fiber.

It has been shown'® that for circularly symmetric fibers and quasi-
monochromatic sources, the minimum rms impulse response width is
independent of dispersion. For the optimum profile, the rms impulse
response width is

cq = 150A’nsec/km (6)
where
A = 2 [1 — (Naxis/Nctaading)®] = An/n (@)

For example, if A = 0.04, we have, for the optimum profile, o, = 0.24
nsec/km, regardless of the material used. This result has been general-
ized'") to a large class of noncircularly symmetric profiles.

In general, the two effects discussed above, material dispersion and
ray broadening, combine in a complicated way. For some materials, the
quasi-monochromatic impulse response P(f,) merely shifts in time as
the optical frequency varies. Tt is straightforward to show that the rms
impulse response width then is

7=V + od ®)
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where ¢, is given in Eq. (5), and g, is given in Eq. (6) for the optimum
profile. To solve the general problem one needs to integrate the product
P(t,0) ®(w) over w, where ®(w) is the source spectrum. We have

P(t) = f - P(t )P (w)dw ®)

—m

The impulse response P(t) determines the maximum data rate that can
be achieved for a given optical power at the receiver and for a specified
error rate.

Ideally, the output pulse should be as brief as the input pulse. In fact,
some degradation is always suffered. The maximum transmission capac-
ity is reached if (1) we select a light-emitting diode whose peak emission
occurs at the wavelength at which d*n./d)\,> = 0, where n, is the fiber
refractive index on axis (e.g., A, = 1.25 ym for phosphosilicate fibers)
and (2) we select an index profile at A, that minimizes the quasi-mono-
chromatic impulse response at both A, — AA/2 and A, + AM/2, where
A\ denotes the source linewidth. As we have indicated earlier, it is
always possible to find an index profile that reduces the quasi-mono-
chromatic impulse rms width, at any given wavelength, down to a value
as small as 150 A*nsec/km. To achieve low pulse broadening at two
different wavelengths, however, additional degrees of freedom, for ex-
ample, two dopant materials, are needed.

Characterization of the Fiber Material

In view of the lack of detailed experimental result concerning the ani-
sotropy of fiber materials, we assume in what follows that the ratio n
of the free-space wavelength A, and the wavelength A in the medium is
independent of the direction of propagation and of polarization.

We already indicated that to evaluate the broadening of quasi-mono-
chromatic pulses propagating along different rays in optical fibers it is
essential to know how the magnitude of the local group velocity u varies
with position as well as the variation of the wavenumber k at the
carrier frequency considered. Instead of dealing directly with the group
velocity, we find it convenient to define a dimensionless dispersion
parameter

S = —Xn(dn/d\o) (10a)
which can be written alternatively

S =nw(D—1) D = (w/kXdk/dw) = v/u (10b)
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where D is the ratio of the local phase (v) and group (u) velocities.
For the materials commonly used in fiber optics, § is of the order of
0.02.

The measured variation of n with A, is usually fitted to a three-term
Sellmeier law

== ﬁl A(1—m)" my = (h/M) (1

This law involves six coefficients: 4,, 4,, 4., I,, I,, I,. The parameters
L, 1y, I, physically represent the wavelengths of resonance of the material.
Two of them, [, and [, correspond to ultraviolet resonances, and [, is a
far-infrared resonance. The physical justification for the Sellmeier law
is not important for our present purpose. This law does describe the ex-
perimental data accurately. Once the coefficients 4, I, y = 1, 2, 3 in
Eq. (11) have been determined, the dispersion parameter S defined in
Eq. (10) can be evaluated at any wavelength from the simple expression

S = 3 Aur,(1—m,) (12)

Both n and § vary with the concentration of dopant in the host mate-
rial, and S can be considered a function of # for any one-parameter class
of materials at a given wavelength. The variation of S as a function of n
for germania-doped silica, based on measurements made™ on prisms
of bulk samples with the minimum deviation method, is shown in Fig. 1.
We have considered two wavelengths of particular interest: A, = 0.9 pm
and X, = 1.06 um. The concentration of germania in mole percent is
shown near each measured point.

Once we have selected a particular material on axis, it is convenient
to introduce, in place of the refractive index n(r) and dispersion param-
eter §(r), a relative phase index N(r) and a relative group index N(r)
defined as follows:

N(ro) = 1 — n¥(r,\)/ne(No) (13)
N(r) = [N(n + S©) — S(M)/[ns* + SO)] (14a)

where n,(x,) = n(0,A,) is the refractive index on axis. The dependency
on A, is omitted in Eq. (14a) for brevity. N can be written alternatively
in the form

D, = N/N =1 — } (\/NXON/aN)[1 —(No/no)dno/d\)*  (14b)

For any given one-parameter class of material, the relative group index
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Fig. 2. Variation of the difference N — N of the relative group and phase indices
as a function of the relative phase index N = 1 — n2/n,? for various materials at
a wavelength of \, = 1.06 um. The dots correspond to measured points with the
concentration of germania and boron oxide in mole percentage shown. The dashed
line is interpolated.

N can be considered a function of the relative phase index N. This
function is obtained from the S(n) curves, such as the ones shown in
Fig. 1. A variation of N as a function of N is shown in Fig. 2 for a
germania- and boron oxide-doped fiber with 17 mole percent germania
on axis, at a wavelength of A, = 1.06 um.

In the special case in which N/N = D, is a constant within the core,*
the optimum profile is very close to a power-law profile.** The value
of the exponent « of r* that minimizes the impulse response width is,
exactly®

D /(1+x) = 1/(1+n./n) (15)
where 7, is the cladding refractive index. If, in addition, N/N happens

to have the same value in the cladding,} the refractive-index profile that
minimizes the quasi-monochromatic impulse response width is, exactly

N(r) = 1—n¥(r)/n? = 2A(r/a)1P i+ +/1755) — 1 (16a)

* Approximately, this condition means that the index profile does not deform as
the wavelength varies (but perhaps does change scale).

i We call “cladding” the region with constant refractive index that usually sur-
rounds the central region (core) with graded index.
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where Dy is as given in Eq. (14b), with N replaced by 24. For fibers
with very small A, a simplified form of the result in Eq. (16a) has been
found to be in good agreement with pulse transmission measurements. *®
For larger values of A, however, the curves shown in Figs. 1 and 2 do
not support the assumption that N/N is a constant.

Equalization of times of flights for helical rays of constant radius is
straightforward. The condition is

N
(r/a)* = exp f [2N — N* — NI'dN (16b)
24
It may suffice for most practical purposes.

As indicated earlier, the variations of S as a function of n in Fig. 1
are based on measurements made on prisms of bulk samples with the
minimum deviation method. Angles of refraction, unlike the optical
thickness of thin samples, are insensitive to alterations of the sample
surface that may be caused, for example, by surface chemical change or
compacting.*® Some samples were chilled in order to estimate the effect
the rapid cooling that takes place when the fiber is drawn may have on
the refractive index (quenching). For germania doping, the effect of
chilling is found to be almost negligible. It has a more significant effect
on the refractive index of materials such as boron oxide-doped silica.
The accidental and systematic errors involved in the measurement of n
and dn/d), have been estimated. The values given for n appear to be
accurate to the fifth decimal place, and the § values given in Fig. 1 to
be accurate to within =1%.

Various methods have been proposed to measure the refractive index
profile n(r) of fibers directly, including the following:

1. Measurement of the Fresnel reflection from a fresh break of the
fiber. (For a recent report and carlier literature see ref. 19.) With de-
convolution the resolution afforded by this technique can be as good as
A, ~ 1 pm. Great care must be exercized to avoid chemical or physical
degradation of the fiber surface, particularly for boron oxide or phos-
phor oxide dopants.

2. Measurement of the optical thickness of thin fiber samples with a
microscope interferometer. (For recent results, see, for example, ref. 20.)
Sample preparation and measurements are very time consuming.

3. Measurement of the intensity in the cross section of the fiber ex-
cited by Lambertian sources. (For a recent report, see ref. 21.) Alterna-
tively, a small area of the fiber, of the order of A %, may be excited with a
microscope objective and the total transmitted power measured. (For a
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theoretical discussion, see ref. 13, p. 257.) This technique is extremely
easy to implement. The resolution, of the order of A/4/2A =~ A,, is
better than that provided by the interferometric technique. The tech-
nique has been applied to fibers with elliptical as well as circularly
symmetric profiles, with results reproducible to better than one part in
one thousand. **

The fine details of a fiber profile can be exhibited by differential chem-
ical etching and observation with an electron microscope, or by electron
bombardment and X-ray analysis.

In spite of recent progress, the accuracy and resolution offered by
direct measurement techniques do not, at the moment, permit the evalua-
tion of the dispersion curve S(n) with sufficient accuracy. Thus, we have
to rely on measurements on bulk samples. Hopefully, the techniques
described in 1 and 3 above will eventually prove satisfactory.

Evaluation of Pulse Broadening

Let us first indicate how spatially incoherent sources can be character-
ized. We select a small portion of the source area with a pin hole, and
measure the radiation from that area on a plane screen located at a large
distance d from the source. We assume for simplicity that there is an
index matching fluid between the fiber and the screen. If P(x,, ¥,) de-
notes the intensity distribution on the screen, the (unnormalized) source
distribution is*?

flksky) = (k/k)* P (*'%’ ‘}gi’) K=k —k2—k; ()

where k is the wavenumber in the medium between the screen and the
fiber. In what follows we assume, for simplicity, that f(k,, k,) is a con-
stant when k.* + k,* = k* and zero when k,* + k,* > k*. Such a source
is called “Lambertian.” Its radiance is independent of direction. Alter-
natively, we can say that all the fiber modes that are confined to the
source area (including the truncated radiation modes) are equally ex-
cited by the source. We also assume that the ray distribution in Eq. (17)
and the source spectrum do not vary during the pulse.

Many of the rays excited by the source with different initial positions
and slopes differ only by translations along the z axis and rotations
about the z axis. Let us call such rays “similar rays.” Because the fiber
length is always very large compared with the ray periods, pulses that
travel on similar rays suffer almost identical delays. It would therefore
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be a waste of computer time to evaluate the times of flight of every one
of the excited rays (sampled from a continuum) separately. In circu-
larly symmetric fibers, the times of flight depend, in fact, on only two
parameters, M and B, where M denotes a normalized axial angular mo-
mentum (or aximuthal mode number) and B a normalized axial wave-
number (or propagation constant). The precise definitions of M and B
are not needed here (see appendix). The values of M and B are selected
from the series

M =1/4,2/4, ... 18)
B = 20— 1)/, 20(I=2)/1, . . . (19)

where, as before, 2A = 1 — n,*/n* Typical values for the constants 4
and I in Eq. (18) are 50 and 20, respectively. These numbers can be in-
creased for a finer sampling of the rays excited by the source. Strictly
speaking, the sequence in Eq. (19) is applicable only to square-law
fibers. However, the index profile of large capacity fibers is usually not
very different from a square law. While times of flight are extremely
sensitive to minute changes of the refractive index profile, the details of
the ray sampling procedure are rather unimportant. This is why the ap-
proximate sampling series in Eq. (19) can be used.

The time of flight of a pulse along the ray trajectory specified by M
and B is obtained by solving with the Euler or Runge-Kutta techniques
the system of first-order equations

dR/dZ = (1— By 2P (202)
dP/dZ = (1—B)y2(— } dN/dR 4+ M?/R9) (20b)
dT/dZ = F(R) (20c)

where
F(R) = (N*— 2N+ B)/[1-B + (1-N)Y1—B)"] (20d)

for the three functions R(Z), P(Z), T(Z), which represent normalized
ray radius, ray momentum, and time of flight, respectively. Z is a nor-
malized axial distance. In Eq. (20) N and N are assumed to be known
functions of the radius r. They were defined earlier in Egs. (13) and
(14), respectively. Within our present scalar ray optics approximation,
the impulse response of a fiber is independent of scale, so we can re-
place r by R = r/a, where a denotes an arbitrary length, perhaps the
core radius.
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The initial values R(0), P(0), and T(0) are defined by

RO) = R,  dN(Ry)/dR, = 2M?/R? (21a)
P(0) = [B — N(Ry) — M?*/R{]¥ (21b)
7(0) = 0 21¢)

The derivative dN/dR in Egs. (20) and (21a) can be obtained alge-
braically if N(R) is given from a simple analytical expression such as a
power law or by incrementing R. If the relative refractive index profile
is obtained experimentally as a succession of closely spaced points (say,
every micrometer radially), the slope dN/dR can be obtained from the
values of N at adjacent points. The motivation for using the initial radius
R, defined in Eq. (21a) is that this radius corresponds to a real trajec-
tory for any permissible value of B at any selected value of M. R, de-
pends on M but not on B. The integration of the system in Eq. (20)
terminates after one ray period. Usually 1,000 steps per period are
enough if the Euler method of integration is used.* The Runge-Kutta
method requires fewer steps. The difference between the time of arrival
of a pulse along the ray considered and the time of arrival of a pulse
along the fiber axis, in nsec/km, is

At = 5,000 Thnat/ Zona (22

because the time of flight of axial pulses is approximately 5,000 nsec/km.

The series of values of M and B taken in sequence according to Eqs.
(18) and (19) terminates when P (0) in Eq. (21b) ceases to be real,
that is, when the quantity inside the square root becomes negative. For
a Lambertian source, the rms impulse response width defined in Eq. (1)
is obtained by averaging Af* and At over all the values of M and B per-
mitted by the condition set up above. The impulse response P(f,«) is
obtained by counting how many values of M and B correspond to ar-
rival times between ¢t and ¢ + At, where Af denotes some small time
interval.

As w varies, both the relative index profile N(R) and the dispersion
profile N(R) usually vary. The impulse response P(t,w) needs to be
evaluated by the procedure outlined above at various optical angular
frequencies « (or source wavelength A,) and summed over » according

* The Euler method consists of introducing the new values for R, P, Z from the
left-hand side of Eq. (20) [e.g., Ry.. = R.q + (dR/dZ)AZ, where AZ denotes the
integration step] into the right-hand side of these equations. A typical value for

AZ is V2A/1,000.
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to Eq. (9). If we are interested only in the rms impulse response width,
we may use Eq. (1a). where < > is understood now to be a sum over
all the rays [sampled by Eqs. (18) and (19)] and an integral over all
optical frequencies, weighted by the source spectral curve.

Before proceeding with examples, let us summarize the procedure
described above. One first measures, with an accuracy better than about
1%, the dispersion parameter § = —An(dn/d\,) and the refractive
index n for the class of materials considered, for example, silica doped
with various amounts of germania. The variation of N with N for the
class of material considered at some optical angular frequency « is ob-
tained from these measurements. For an existing fiber, the measured
variation of N with radius is fed into the computer program together
with the variation of N with N to obtain the impulse response P(%,«).
One then sums P(t,w) over the source spectrum, and feeds the result,
P(1), into an error rate computer program.

In the procedure described above, we have assumed for simplicity that
the slightly leaky rays are totally attenuated and that all the rays suffer
the same attenuation. To account for the contribution of the slightly
leaky rays to the impulse response the B values in Eq. (19) should be
initiated at 2A + M? instead of at 2A. For the power transmission of
these slightly leaky rays, see, for example, ref. 13, p. 322.

Sometimes the material absorption is not uniform within the core
cross section. For example, Rayleigh scattering in germania-doped silica
increases with germania concentration. The loss in that case decreases
away from axis. The attenuation is obtained, in general, by integrating
k.ds along the ray considered, where k, denotes the imaginary part of
k = (w/e)n, expressing the local material loss.*® To account for the
nonuniform transmission of the rays, weighting factors need to be intro-
duced in the evaluation of the averages. As is well known, defects in the
fiber scatter or couple the modes, and may deeply affect the impulse
response. The most recently made *fibers, however, exhibit very little
mode coupling, so these effects will not be discussed.

To design a multimode fiber, that is, to select the profile N(R) that
provides impulse response widths as small as possible for a given class
of material, it is convenient to write

N(R) = 2A(R? + NoR* 4+ NaRS + . . )/(1 + No + Na .. ) (23)

and vary the parameters N, and N, ... until the value of ¢ provided by
the computer program appears to be minimum. Usually. optical fiber
manufacturers know, at least approximately, how to vary the flow of

Evaluation of Multimode Optical Fibers 91

dopant during the fabrication of the preform in order to achieve a spe-
cified index profile, although successive approximations may be needed.

Numerical Results

The numerical technique described in the previous section has been ap-
plied to germania-doped fibers that have a power-law profile at the
source wavelength

n’(r) = n¥(0) [1—2A3/a)*"] (24)

We used parabolic interpolation-extrapolations from the values of S and
n measured at 0, 7, and 13.5 mole percent germania concentration. Two
cases were considered: a fiber with 10% germania on axis (A = 0.01)
and a fiber with 20% germania on axis (A = 0.02). The cladding is
assumed to be made of pure silica, and to be unlimited in extent. All
propagating modes are assumed to be equally excited and the source is
assumed to be quasi-monochromatic. Losses and irregularities are

A =0.0108

RMS IMPULSE WIDTH IN
NSEC/KM

0.9 095 1 1.05
EXPONENT OF r2

Fig. 3. Variation of the rms impulse response width o as a function of the ex-
ponent « or r? in the power-law profile at the carrier wavelength A\, for a ger-
maniadoped fiber. The variation is based on the curves in Fig. 1 and the computer
program (solid lines). Approximate results obtained by assuming that ndn/d), in
Fig. 1 varies linearly with n? between the end points are shown by dashed lines.
The germania concentration is assumed to be 10 mole percent on axis and zero
at the cladding.
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Fig. 4. Continuation of Fig. 3 for 20 mole percent germania concentration on
axis. The approximate result (dashed lines) is, in that case, essentially unrelated
to the exact result (solid lines).

neglected. The rms impulse response width ¢ calculated in the previous
section is shown in Figs. 3 and 4 by plain lines, for three wavelengths
of interest, as a function of the exponent « in Eq. (24). For comparison,
the rms impulse response widths calculated under the assumption (made
implicitly in ref. 2) that n(dn/d)\,) varies linearly with n* as the con-
centration varies are shown by dashed lines. There are large discrepan-
cies between the two, particularly for A, > 0.9 um and A > 0.01. For
example, for A, = 1.2 pm and A = 0.0216, the approximate formula
predicts that the minimum value of ¢ is 0.08 nsec/km when the ex-
ponent « is equal to 0.965. For that value of «, ¢ is, in fact, equal to
2 nsec/km. The minimum value of ¢ is obtained for x = 1.05 and is
equal to 0.6 nsec/km. One analytical formula presented,** on the other
hand, can handle arbitrary variations of ndn/d\, with n% For x = 1
(square-law medium) this analytical result, shown by black dots in Figs.
3 and 4, agrees with the numerical result to better than three decimal
places.

Using the form in Eq. (23), the optimum profile for a given class of
material has been determined by successive approximations. For ex-
ample, for a fiber with 17 mole percent germania on axis (A = 0.022)
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Fig. 5. The solid line represents a correction to the profile (change of relative
index with respect to square law) that minimizes pulse broadening. The calcula-
tion is based on the curve in Fig. 2. The dashed line corresponds to the optimum
profile calculated under the (invalid) assumption that ndn/d\, varies linearly
with n2.

and A, = 1.06 ym we find that the rms impulse response width can be
reduced to 100 psec/km by a proper selection of the coefficients of the
expansion of n*(r) in series of r*. This near-optimum profile (solid line
in Fig. 5) departs significantly from a power-law profile (dashed line in
Fig. 5). The numerical results are in good agreement with the semi-
closed form formula®® and with Eq. (16b).

Wave Optics Effects

The above results rest on the scalar ray optics (or WKB) approxima-
tion. In some cases, wave optics effects are significant, even for fibers that
have large values of the normalized frequency V = k,a\/2a. In par-
ticular, a considerable degradation of transmission capacity takes place
when the refractive index profile varies by steps instead of varying
smoothly, even when there are as many as 40 steps.”* Using a first-
order perturbation of the Fock parabolic equation (a paraxial form of
the scalar Helmholtz equation), it has been shown** that small sinus-
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oidal ripples in the index profile may also cause large degradation.*
Thus, the technique presented in this paper should be restricted to fibers
with smooth profiles. It was also pointed out® that a few modes close
to cutoff may increase the rms impulse response width by almost an
order of magnitude. These near-to-cutoff modes are likely to be attenu-
ated by the lossy jacket surrounding the cladding, however, or by tun-
neling into a higher index cladding.*® Thus, it appears that for carefully
made multimode fibers, ray optics techniques are applicable.

Should polarization effects be ignored? The difference in time of flight
between corresponding HE and EH modes can be shown to be of the
order of 10,000A%/V nsec/km, where V is the V¥ number for any smooth
profile.**) Because this difference is negligible for large-A fibers, it ap-
pears that the Maxwell equations'” are not needed for smooth profiles
and isotropic fiber materials. If further investigation proves that strain-
induced anisotropy is significant, the full Maxwell equations will be
required.

Conclusion

The numerical technique presented in this paper is central to the deter-
mination of optimum profiles for any large-A multimode fiber, and to the
evaluation of the effect of arbitrary smooth deviations of the profile from
optimum on the transmission capacity. In essence, our technique amounts
to integrating three first-order equations over a ray period for different
rays excited by the source. Two of these equations provide the ray tra-
jectory for specified initial conditions, and the third equation provides
the time of flight of a pulse along the ray trajectory. This numerical tech-
nique has been applied to fibers that have a power-law profile at the
carrier wavelength but not necessarily at neighboring wavelengths (be-
cause of inhomogeneous dispersion). For A > 0.01, our numerical re-
sults are essentially unrelated to analytical results previously reported.®
The latter were based implicitly on the assumption that ndn/dA, varies
linearly with n® as the concentration varies. Measurements’ show that
this assumption is generally not valid. Using our numerical technique,
we have determined approximate optimum profiles for germania- and
boron oxide-doped fibers, which follow also from the semiclosed-form
result.’® For quasi-monochromatic sources, profiles can always be found

* With our wave-optics numerical technique we obtained values of o that agree
well (to within 15% ) with the first-order perturbation results shown in Fig. 3
of ref. 24.
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that reduce the rms impulse response width ¢ down to about 150A%nsec/
km. The approximate formula in Eq. (8) suggests that this expression
for « is applicable also to LED sources (that have a nonzero linewidth)
if the optical wavelength is properly selected (e.g., A, ~ 1.25 um for
phosphosilicate fibers). However, the accuracy of Eq. (8) can be ques-
tioned. More exact expressions show that, for typical LED linewidths
and A = 0.01, the minimum rms impulse response width is ¢ =~ 60
psec/km instead of 15 psec/km.

Detailed and precise comparisons between calculated and measured
impulse response are needed before the practical value of the numerical
technique presented can be assessed. For the time being, this technique
appears to be accurate enough for most multimode fibers. About 1 min-
ute on an IBM 370 computer is required, a much shorter period than that
needed by numerical techniques based on the Maxwell equations.

Appendix

Derivation of the Time-of-Flight Equations

The equations that define the time of flight of optical pulses in inhomo-
geneous anisotropic media are formally simple, They are the Hamil-
tonian equations

dX/de = 9H(K, X)/9K (Ala)
dK/ds = —3H(K, X)/aX (A1b)

where X is a four-vector {x, ict} representing the pulse position x at
time ¢, and K is a four-vector {k, iw/c} representing the wave vector k
and angular frequency w of the pulse. X and K are considered functions
of the parameter 0. At any location (x) and time (), the properties of
the medium are defined by the surface of wave vector

H(K) =0  atsome X (A2)

The above formulation appears to be rather abstract. However, once
its physical significance has been understood, the specific results needed
in fiber optics are easily derived through a succession of straightforward
approximations. These transformations have been discussed.' We shall
therefore omit a few steps and rewrite Eqs. (A1) directly in a form ap-
plicable to fibers that are uniform along the z axis and incorporate
isotropic lossless materials with wavenumber & = k(x,y,w). The arbitrary
parameter ¢ in Egs. (Al) is now taken to be the axial (z) coordinate.
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The five functions x = x(2), y = ¥(2), k, = k,(2), k, = k,(2), t =
t(z) obey first-order equations

dx/dz = ki/k. (A3a)
dy/dz = k,/k, (A3b)
dk./dz = (9k%/9x)/2k, (A3c)
dk,/dz = (0k*/dy)/2k. (A3d)
dt/dz = (0k*/dw)/2k. (A3e)
where
K(x,yw) = kst + k? + k7 (A3f)

Physically, k,, k,, k. represent the rectangular components of the wave
vector k. It is easy to show from Egs. (A3) that the axial component
k. does not vary along any given ray; k. is called a constant of motion.
Similarly, the optical angular frequency w is a constant of motion because
of the time invariance of the medium. For any given profile k =
k(x,y,w), the right-hand sides of Egs. (A3) are explicit functions of
x, ¥, k,, k, and of the two constants of motion k. and w. If we specify
the initial condition on the pulse, namely, its carrier angular frequency
w, the time ¢ at which it intersects the input plane of the fiber, its initial
position (x,y), and its slope (related to k,, k,), we can evaluate k. from
Eq. (A3f) and proceed with the numerical integration of Egs. (A3).
For noncircularly symmetric profiles, the ray trajectories are usually not
periodic. However, the ratio ¢/z soon tends to a limit as z increases. It
is therefore unnecessary to integrate  over the whole length of the fiber.

It is important to observe that Egs. (A3) are unchanged if x, y, z,
and ¢ are multiplied by the same factor, say «. Physically, this means that
times of flight per unit length remain the same if we change the scale of
the refractive index profile n(x,y). They are the same, for example, for a
fiber with a core radius of 40 um and for a similar fiber with a core
radius of 100 um. The ray periods, however, increase in proportion to .
This scale invariance does not hold when wave optics effects are sig-
nificant. It is restricted to the ray optics (WKB) approximation.

Let us consider the special case of circularly symmetric fibers with &°
a function of w and 7* = x* + y* only. In that case there is an additional
constant of motion, the axial component of the ray angular momentum
(or azimuthal mode number)

p = xky — yk. = rky (A4)
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where k, is the azimuthal component of the wave vector. It is not dif-
ficult to show, from Eq. (A3a) to Eq. (A3d), that du/dz = 0. The
relation (A3f) can now be replaced by

k? = krg ‘I“ koz + kzg (AS)

because the r, ¢, z coordinate system, as well as the xyz coordinate sys-
tem, is orthogonal. Thus we have

k. = [K(r, w) — k2 — p2/r2]2 (A6)
and the Hamiltonian equations are, from straightforward partial differen-
tiation of k. in Eq. (A6) with respect to k_, r, and w, respectively

dr ok, _k,

dz~ ok, k. aie)
kr z

c.if» = aai = (0k*/ar + 2u/r%)/ 2k, (i
g - if, — (3k2/0w)/2k, (ATc)

The variation of ¢ with z will not be needed.

For any given value of ;, the function k'(r) = [k, — u2/r*]* can be
considered an effective wavenumber, in the sense that it incorporates the
effect of the helical motion of the ray, expressed by the term p*/r®. At
the turning points of a ray we have k, = 0 and therefore k¥ = k.. It is
clear that the maximum of the curve k’(r) is always located between the
two turning points.* It is therefore convenient to choose that particular
value of r, say r = r,, as the initial ray radius in the integration of Eqs.
(A3). This initial radius r, depends on . (approaching the origin for
meridional rays p = 0), but it is independent of k.. The initial radius r,
is thus defined by

0K’ (roww)/dro = 0kX(row)/dre + /1 = 0 (A8)

Let us introduce a few convenient transformations. First, according to
a previous remark, we can divide r and z by the core radius a without
affecting the equations. Thus we set

R =r/a (A9a)
Z = 2/a (A9b)
* For some ill-behaved refractive index profiles there may be more than two turn-

ing points. The ray optics technique presently used is not applicable to such
profiles.
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Next, we introduce a relative index profile N and a relative wave-
number B

N(») = | — B(n)/ké (Al0a)
B =1-—k#k (A10b)
ko = k(0) (A10c)
and set
P = k/ko (Alla)
M = u/(ka) (Allb)

in the ray equations (A7a) and (A7b). We readily obtain the ray equa-
tion in Egs. (20a) and (20b) of the main text.

The transformation of Eq. (A7c¢) giving the time of flight ¢ of a pulse
is a little more involved. What we wish to evaluate is the relative time
of flight, defined as the ratio  of the time of flight ¢ of a pulse along a
ray to the corresponding time 7, on axis. The latter is given by

dto/dz = (0ke?/0w)/2ky (A12)

For computational accuracy, it is advisable to integrate (¢ — ;) /t, rather
than r directly. »
We now introduce a relative group index N

N = [0(KoN)/991/(dKo/dQ) = 1 — (0K/9D)/(dK,/dD) (A13)

where @ = w?, K, = k,%. K = k*. Equation (A13) can be shown to be
equivalent to Eqs. (14). With this notation, we have, from Egs. (A7c),
(A10b), and (A12)

S f * (=B - N)—1)Z (Al4)

where Z, is the normalized ray period. If dT/dZ is the integrand in Eq.
(A14), and we rearrange the terms so that only small quantities appear
in the numerator, we obtain

dT/dZ = (1—B)(1—N)—1
/ (E=R =)(Nﬂ—:afws)/[l—B+(1-—N)(1—B)“’] (AL5)

Equations (20d) and (22) in the main text follow.
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