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NOISE ENHANCEMENT IN LASER
AMPLIFIERS CAUSED BY GAIN
NONUNIFORMITY

Indexing terms: Lasers and laser applications. Laser amplifiers

We have calculated the noise-enhancement factor of a semi-
conductor laser amplifier with a very thin active region. This
(somewhat academic) model exhibits large Petermann’s K-
factors. However, the calculated noise-enhancement factor K’
is only about halfl the K-value. The reason for the discrep-
ancy is that in evaluating K’ the radiation modes of the
guiding structure have been taken into account. Similar con-
clusions have been reached for realistic laser models. These
theoretical considerations show that gain-guided laser ampli-
fiers are not as noisy as was originally thought.

In coherent-optics communication systems, it may be advis-
able to amplify weak signals before detection.! If the laser gain
is large enough, the noise/signal ratio at the detector output
may be reduced down to

N/S = ahf{P, (1

In eqn. 1. § is the square of the signal detected current, N is
the average square of the detector current fluctuations per unit
bandwidth, hf represents the photon energy and P, the
received optical signal before optical amplification. The result
in eqn. | applies only if the lower level of the laser medium is
unpopulated and if only the beat between the signal optical
field and the field spontaneously emitted by the amplifier
medium needs to be taken into account. We assume that this
is the case.

More importantly for our discussion, eqn. | also requires
that the amplifying medium be homogeneous in the region
v?rhere the signal field intensity is significant. This latter condi-
tion has perhaps not been sufficiently appreciated up to now.
A few years ago, Petermann? did notice, however, that in
gain-guided semiconductor lasers, spontaneous emission in the
amplified mode is very much enhanced compared to what
happens in index-guided lasers by a factor K that may be as
large as 50 in typical situations. Concerning this important
observation we would like to make two comments:

(i) First, for laser amplifiers (and perhaps also for laser
oscillators), the significant noise-enhancement factor is not K
but a smaller factor K'. This is because the concept of sponta-
neous emission ‘in the mode’ is ambiguous for multimode or
open guiding structures.® We show in this letter that in typical
situations the noise is enhanced by a factor K’ which is only
about half the K-factor because of the existence of radiation
modes.

(i1) Secondly, we would like to point out that noise enhance-
ment (factors K or K') is not so much related to gain guidance
as to gain nonuniformity. As a matter of fact, we find large
K-factors in normally guiding thin slab geometries, if the slab
thickness is only about 0:01 um. Large noise enhancements
can be found also in nonuniform surface-emitting laser ampli-
fiers (with the optical beam perpendicular to the amplifying
slab, rather than guided by it).*

X

Fig. 1 Thin slab model
Input plane = =0, detector plane z = L. The slab is normally
guiding and has gain (susceptance s = a — ib. b > 0). ¥ (x, 0) rep-

resents the input optical field, supposed to be in the fundamental
mode

Let us consider a thin slab of amplifying medium according
to Fig. 1. The slab is supposed to be thin enough to be’
replaced by a reactive surface. That slab has a real index of
refraction larger than that of the surrounding medium and is
therefore normally guiding. However, because it is very thin
(about 0-01 um) the optical wave is only weakly guided and
extends over a rather large distance on both sides of the active
region. Let s = a — ib denote the slab susceptance.® The field
amplitude of the gnided mode decays as exp (—a|x|), so that
we can define the mode thickness as the width which contains
half the modal power 2e = log (2)/a. Petermann’s K-factor is
simply

K =1+ (b/a)? (2)

We have calculated the noise-enhancement factor K’ due to
the beat between the signal field and the spontaneously
emitted field, taking into account the excitation of both the
guided mode and of the radiation modes by spontaneous
emission. The former wave is amplified while the latter are
neither amplified nor attenuated. We have arrived at an essen-
tially closed-form expression for K':

L
K' =K Jz? exp (—2yzo)f(zo) dz, (3)
0

The f(z,) function describes spontaneous emission from a
point of the slab located at a distance z, from the input plane,
the total laser length being L. The expression for f(z,) can be
written in closed form, but it is somewhat too lengthy to be
given here. In eqn. 3, y = ab/k, denotes the guided-mode gain
factor. The laser power gain is G = exp (2yL). ko is the propa-
gation constant in the outer medium, a real quantity.
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In the numerical application, we have considered a laser
length L = 200 ym and a gain G = 10 (10 dB). This constant
gain can be achieved either with a large confinement factor
and a small medium gain, or a small optical confinement and
a large medium gain, or intermediate situa;ions. We _have
plotted in Fig. 2 Petermann's K-factor, given in eqn. 2 wlth a
logarithmic scale, and the ratio K'/K of the effective noise-
enhancement factor K' to K, as given in eqn. 3, as a function
of e. As one can see, for typical gains and typical laser lengths,
K'/K is about one half.

100
K
|
= 10} KK =
o5 X
1 1 1 1 1 0
] 1 2 3 4 5 -]
mode thickness eum

Fig. 2 Ratio K'/K of the effective noise enhancement factor K' to Peter-

mann's K-factor for a very thin slab semiconductor laser amplifier
Length L = 200 um, gain = 10 (10 dB) and different mode thick-
nesses 2e = log (2)/a. Also shown is Petermann’s K-factor, from
egn. 2, in logarithmic scale

Let us recall that we are presently dealing not with gain
guidance in the junction plane as in Reference 2 but with
normal guidance in the plane perpendicular to the junction. In
present-day devices, the K factor in that xz-plane is very close
to unity, either because the slab is thick (about 0-1 um) or. in
the case of quantum-well lasers, because separate optical con-
finement is provided. Therefore the weak guidance situation
considered in this letter is not directly applicable to present-
day lasers. Our purpose was to show on a mathematically
tractable model that the effective noise-enhancement factor
may be significantly smaller than K, as was first suggested in
Reference 3. In fact, similar results for K'/K have been
obtained by Sansonetti (private communication) for realistic
three-dimensional lasers, using the beam propagation method.
Spontaneous emission is modelled in Sansonetti’'s numerical
technigue by a narrow Gaussian beam instead of a d(x) func-
tion as in our mathematical work. The full details of eqn. 3
and the range of validity of the thin slab approximation will
be given elsewhere.
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SURFACE-ACOUSTIC-WAVE PROPAGATION
ON A PIEZOELECTRIC SUBSTRATE WITH A
PERIODIC METAL GRATING

Indexing terms: Surface acoustic waves, Periodic meral
grating, Piezoelectric substrates

An analysis is presented for modes propagating via a penod-
ic metal grating on the surface of a piczoelectric substrate.
Assuming no loss in the structure, the numerical solution is
exact in the limit, combining the effective permittivity func-
tion formulation with the least-squares residual applied at
the surface.

Introduction: For any guided-wave system, the periodic
grating is a classic structure for effecting control over phase
and group velocities, field distribution and possibly coupling
between specific modes or transducers. As part of a study of
surface skimming bulk waves, experiment has shown'-? that a
periodic planar grating of metal is indeed a useful way of
controlling the guiding of particular surface acoustic waves.
One experiment® used a LiNbO, substrate with a 20 um
period metal grating between the input and output interdigital
transducers. Unfortunately, the only existing theory' is very
approximate in assuming that the piezoelectric substrate is
isotropic (sic) and considers only ‘the lowest order harmonics’.
The purpose of this letter is to describe a new theory that is
numerically ‘exact-in-the-limit’. It consists of a combination of
two theories, that of the ‘effective permittivity function™ and
the ‘least-squares residual’.*
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Fig. 1 Longitudinal section of structure

Theory: The structure to be analysed is shown in Fig. 1, where
we have a piezoelectric material throughout y <0, vacuum
throughout y >0, and the whole structure is periodic (of
period A) without limit in the z direction. The substrate has
stiffness and piezoelectric tensors ¢ and e. and permittivity &.
On the surface y = 0 we have a metal grating (of width F.).
Taking a typical ‘unit cell’ from z = —4/2 to + 4/2, we have
a metallised surface from z = —F4/2 to +F4/2, and metal-
free surface over the rest of the unit cell. The whole system is
taken to be loss-free. We look for modal solutions, namely
fields such that, for a given structure and given frequency o,
we want a phase shift per unit cell of k, 4 such that for any z,

{all fields at z = z5 + A}

= exp (jko4) - {all fields at z=z,} (1)
For any such solution we note that:

(a) via Floquet's theorem field dependence must be of the form

Y Fix. y) exp (jk,2) 2)

where
k, = ko + (n2m/i) (3)
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