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Abstract: A general and simple expression for the
natural linewidth of lasers with high, spatially
inhomogeneous gain, such as semiconductor
lasers, has recently been reported by the author in
a short paper. In the present paper, the relation is
applied to a number of circuits relevant to semi-
conductor injection lasers. Its significance is clari-
fied by considering simple lumped circuits. It is
further generalised to anisotropic materials which
may be nonreciprocal, and the role of dispersion
inside and outside the laser cavity is discussed.
The theory is restricted to single-mode operation
(well above threshold operation), but saturation is
neglected.

1 Introduction

It is well known that transverse inhomogeneities in gain
enhance the natural linewidth of high-gain lasers, by a
factor K > 1 (see References 1 and 2). By ‘natural line-
width’ we mean the nonzero linewidth which results from
spontaneous emission in the active medium. The theories
in References 1 and 2, however, are essentially 1-
dimensional. A formula derived from first principles is
given here which generalises previous results to arbitrary
3-dimensional geometries, and makes them more precise
[3]. That formula shows that a K-like factor exists also
in the longitudinal direction. The fact that the Shawlow-
Townes (ST) formula is not applicable when the mirror
reflectivity is not close to unity has been recognised
carlier [4, 5]. Although this fact can sometimes be over-
looked [6, 7] for conventional lasers (error ~10%), it is
“important to take it into account in the case of reduced
reflectivity lasers. The departure of this longitudinal
K-like factor from unity is not as large as in transverse
directions, but it is nevertheless significant when the
mirror power reflectivities are much smaller than unity.
When P, = 0.01, for example, the laser linewidth Af'is 4.6
times the value calculated from the ST formula. The fact
that Petermann’s K factor and the longitudinal linewidth
enhancement are derived from the same basic formula
was, to our knowledge, first pointed out in Reference 3. A
recent paper by Henry [8] goes in the same direction.
However, Henry considers only configurations that are
uniform along the laser axis between two partially reflec-
ting mirrors. To obtain a comprehensive 3-dimensional
formula, it is essential to include the detector of radiation
in the laser cavity.
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If the effect of saturation is to be treated consistently,
it is essential to introduce some nonuniformity along the
laser structure because the field intensity is larger near
the end mirrors and this results in a reduced carrier
density there, when the series resistance is not negligible.
A change in carrier density affects, in turn, the complex
medium permittivity, For the sake of simplicity, satura-
tion is neglected in the present paper. Therefore, formulas
assuming full saturation such as the ones given, for
example, by Henry [6] should be multiplied by a factor
of 2, because intensity fluctuations are not suppressed.
The « factor will not appear because the carrier density is
independent of time in the unsaturated regime.

Single-spatial-mode (both transverse and longitudinal)
operation is assumed. One may wonder whether it is con-
sistent to neglect saturation and at the same time con-
sider single-mode operation. Indeed, the [former
assumption is usually considered valid below threshold
and the latter well above threshold. However, circum-
stances may be found in which both assumptions are in
fact valid simultaneously. This may be the case. for
example, when electrons and holes recombine mainly
nonradiatively. Then the number of electrons does not
fluctuate much as a result of the optical field intensity
fluctuations. Another case is when the voltage across the
junction and therefore, approximately, the energy differ-
ence between the quasi-Fermi levels, is held independent
of time with the help of the appropriate electronics.
However, saturation is in fact important for most semi-
conductor lasers driven by a constant current well above
threshold. Saturation is neglected here for simplicity, as a
first step toward a full solution,

Under those assumptions, the laser field can be viewed
as amplified spontancous emission. Spontaneous emis-
sion is modelled by electrical currents J(r) randomly
oriented and d-correlated in space. The averaged quan-
tity <(J + J*) is proportional to hf, where h is Planck’s
constant and f the optical frequency, and to the negative
imaginary part of the medium permittivity e. This repre-
sentation is discussed in detail, for example, in Reference
9. The rest of the calculation is based on linear electro-
magnetism.

Let us consider a cavity with perfectly conducting
walls which encloses both the laser and the detector of
radiation. The permittivity ¢ and permeability u of the
medium are, in general, complex scalar functions of space
r=x, y, z and frequency f. The imaginary part of ¢ is
split into g, — &,, where g, represents stimulated absorp-
tion (including absorption by the detector) and &, rep-
resents stimulated emission. Conditions well above
threshold are considered in which the resonating field E,
H, is almost in a single spatial mode. Under those condi-
tions, the product of laser (full half-power) linewidth Af
and dissipated power P (P =2P, is the laser output
power if the internal losses are neglected and P, is the
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power per facet in a symmetrical configuration) is given
by

AfP = 4(hf/2r)

| 2
fami de,-'f.[(s’Ez —WHYav| ()

where ¢ = 2nf, represents the medium conductivity. The
following have been defined: &' = é(fe)/éf, u' = é(fw)/df.
These quantities would be equal to ¢ and p, respectively,
if the medium were nondispersive, but dispersion is
important in many applications. For any vector E,
| E|* = E - E* where the star indicates the complex con-
jugate and the dot a scalar product, and E?> = E -E. The
integrals in eqn. 1 are over the cavity volume (which
includes the detector), and dV = dx dy dz. The proof of
eqn. 1 is reported elsewhere [10].

One important feature of this simple formula is that
the linewidth predicted for a given power is independent
of the distance between the laser and matched detectors
of radiation, as one expects on physical grounds. This is
because travelling wave fields contribute neither to the
integral in the denominator of egn. 1 provided that the
medium outside the laser diode is nondispersive, nor,
trivially, to the numerator. The case of dispersive outer
media will be discussed at the end of this paper.

A more general form of egn. 1 is

AfP = 4(@?21:)“.(5 < 2nfe E* + H - 2nfp, H¥) dV}

x U (E' - 2nfe [E'* + H' - 2nfu, H'™) dV}

=
x

)

'|.(£*-s'£+H* - }WH) dV

where the imaginary parts of the permittivity tensor
and permeability tensor g are split into &, — &, and p,
— u,, respectively. We have defined: & = d(f2)/df and
# =d(fw)/df. In eqn. 2, E' and H' denote the ‘adjoint’

electrical and magnetical fields. These are the resonating

fields in a cavity identical to the one under discussion

except that e, and p are replaced by their transpose, and
the (complex) resonant frequency is the same. In the case
of a ring-type cavity, the adjoint fields are the fields pro-
pagating in the opposite direction with respect to the
initial fields in the transposed medium. In the case where
the medium is reciprocal (¢ and g symmetrical) the trans-
posed medium is identical to the given medium. If, fur-
thermore, the cavity is folded in on itself (as is usual for
semiconductor laser diodes), the adjoint fields coincide
with the resonating fields E and H. Finally, if & and u are
scalar quantities ¢ and p, respectively, and the magnetic
losses can be neglected, egn. 2 reduces to egn. 1. Eqn. 2
can be further generalised to bi-anisotropic media, but
this will not be discussed here [10].
In the case of lumped circuits, eqn. 1 can be written

AP = 4hf2m)(Y R | L1121 Y. C Vi — L™ (3)

where the sum extends over all resistances R, capac-
itances C and inductances L of the circuit. R represents
only the absorbing part of the circuit. Stimulated emis-
sion is expressed by negative resistances that do not
appear explicitly in eqn. 3 but appear indirectly as they
are supposed to cancel almost exactly the losses due to
positive resistances R. I, denotes the current through R,
or L,, and ¥, the voltage across C,. Of course, the
numerator could be written as G, | ¥; |*, where G, = 1/R,,
expressing the loss electrically rather than magnetically.

IEE PROCEEDINGS, Vol. 134, Pt. J, No. I, FEBRUARY 1987

In the present paper, these basic relations will be
applied to simple, yet interesting, configurations. It is
worthwhile to first recall the classical derivation of the
Schawlow-Townes (ST) formula

AfP = 2nhf(Af.)* 4)

where Af is the full half-power laser linewidth, P the
output power, and Af, the so called ‘cold cavity’ line-
width, defined as twice the imaginary part of the complex
resonant frequency obtained when stimulated emission is
suppressed. The proof of eqn. 4 is given in the following
section after Yariv's derivation [11].

2 Parallel LCR circuit

For the simple circuit model shown in Fig. la, the ST
formula applies for any value of the parameters. The

S ; R

Fig.1  Schematic representation of laser oscillators

a Classical LRC parallel circuit

b Series-parallel circuit leading to a departure from the ST formula
¢ Transmission line equivalent of a conventional laser diode

d Ring-tvpe cavity

active medium is modelled as a constant negative con-
ductance — G,(G, > 0) and the cavity as a passive admit-
tance Y(f)= G + iB(f) where the conductance G is a
positive constant and the susceptance B is a function of

the optical frequency f, in parallel with —G,. At the res- -

onant complex frequency f, =f, + if;, we have Y(f,) =
G,, and therefore in the limit where f}/f, =0, B(f)=0
and f; = (G — G,)/(dB/df) < 0. Spontaneous emission is
modelled as a current source /,, driving the circuit. Its
mean Square is

| I, |* = 4KfG, df

for the spectral range f-f + df and h denotes Planck’s con-
stant. Zero temperature is assumed. It is straightforward
to show, from eqn. 1, that the spectral density in the load
Gis

S(f) = 4hfG, G| Y(f) - G, |~ (5)

The full half-power linewidth Af of the laser is obtained
from this expression, assuming a linear variation of B
with fin the neighbourhood of f,. The power P supplied
to the load G is obtained by integrating S(f) over fre-
quency. Well above the threshold, the approximation
Gy~ G can be made in the numerator of eqn. 5. It
follows that

P Af = 8nhfG*? |dB/df | * (6)
3

If B consists of a parallel LC circuit, we have B(f) = 1/
2afL — 2nfC. Thus, at resonance dB/df = —4nC and eqn.
6 can be written

P Af = (1/2m)hf(G/C)? (7)

which coincides with the ST formula (eqn. 4) 2nhf(Af.)?,
where Af, = —2G/(dB/df) denotes the full half-power line-
width of the cold cavity obtained by suppressing G, .

Alternatively, the general formula (eqn. 3) can be used.
Dividing the numerator and the denominator by V2, we
have within the square in the numerator R(I/V)? where
I/V = 1/R. In the denominator, we have C — L(I/V)?,
where I/V = (—i2nfL) " '. Note that I in the numerator is
the current flowing through the resistance R whereas I in
the denominator is the current flowing through the
inductance L. They should not be confused. We then find
a result identical to eqn. 7.

] Series parallel LCR circuit

This circuit is represented in Fig. 1b. The only difference
with the circuit treated above is that the resistance R is in
series with the inductance L rather than in parallel with
it. This, as we shall see, is sufficient to invalidate the ST

. formula when the quality factor of the circuit is not very

high.
The complex resonant frequency f, of the circuit is
given by

(G, + iC2,\R — iL2nf)) = 1 (8)

where — G, represents the active conductance, as before.
Thus f, is given by a 2nd-degree equation. Assuming that
the condition

4/LC = (R/L + G,/C)? ()
is fulfilled, the imaginary part f; of f, is given by
Af = —2f, = (2n){R/L — G,/C) (10)

Well above the threshold, f; = 0, and therefore G,/C ~
R/L. We can then simplify condition 9 to: R* < L/C.

The cold cavity linewidth is given by eqn. 10 with G,
suppressed, that is

Af. = (2n)"'R/L (11)
Application of the ST formula would thus lead to

AfP = (27)" *hfiR/L)? (12)
Application of our general expression (eqn. 3) leads to

AfP = 4hf2n(R| 1) |CV? — LI*| 2 (13)

where V/I = R — i2xnf, L. After rearranging, using eqn.
11, we find that AfP is given by the ST formula in eqn. 12
multiplied by the K-like factor

K =(-R*C/L)! (14)

which is close to unity only if R <./(L/C). A K factor is
thus found even for a rather simple resonant circuit.

4 Laser diode

We consider now a more practical configuration shown
in Fig. lc. It consists of a homogeneous active medium
from z= —L to z=0. At those locations the power
reflectivities are Py and Pjy, respectively.

Let us model the active homogeneous medium by a
uniform transmission line having an impedance per unit
length —R” — iL"2zf and an admittance per unit length
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—G" — iC"2nf, where R” and G" are positive quantities
such that G"/R" = C"/L" = G2. G, denotes the (real)
characteristic conductance of the transmission line. This
line is terminated at z = —L by a conductance G =
G.(1—=r)/1+r) and at z=0 by a conductance G =
G.(1 — r')A1 + r), where r and r’ denote field reflectivities
that we consider real for simplicity. The mirror power
reflectivities are then Py = r* and Py = r'?, respectively.

Let ¥(z) and I(z) denote the voltage and current along
the line. To apply eqn. 1 we use the correspondence: E,
H—-V, 1; 062G 6z)+G dz+L); € =>C", u—L.
Then egn. 1 becomes

AfP = 4(hf127){G, | V(— L) | + G, | V(0) [*}2

=3

(15)

X

j(C'VZ — LI?) dz

where G, and G| denote the absorbing parts of G and G/,
respectively. If the mirrors and loads behind the mirrors
are not active, the subscripts ‘1’ in eqn. 15 may be
deleted. The integral in eqn. 15 is from —L to 0.

Recall now the classical transmission line formulas

V(z) = Z(z) + r’/Z(z)} (16)
2)/G, = Z(z) —r'[Z(z)
where
r'=./(Pr) Z(z)=exp (ikz) k= (C"2nf—iG")/G,
(17)

The resonance condition is
ZiL)r =1 (18)

and the group velocity v, = 2n df/dk = G,./C".
Introducing eqn. 16 in eqn. 15 leads to the following
result:

AfP = (hfj2m)t = 2{(G,/GX1 — Pg)/\/(Pg)
+ (GY/G'X1 — PR)/J(PR}? (19)

where © = 2L/ v, denotes the laser round trip time.

Let us now consider a few interesting cases. Assume
first that the absorbing part is entirely in G'. Then G, =0
and G| = G'. We obtain the minimum possible linewidth
for given 7 and Py, namely

AP = (hfj2myc = *(1 — PR)*/Ph (20)

The result in eqn. 20 is applicable for instance if the
transmission line is lossless and gainless, but G is purely
active in which case G, =0. This result is therefore
applicable to a lossless laser diode with unity reflectivity
on the left-hand side, coupled on its right-hand side to a
long optical fibre terminated by a mirror with reflectivity
% In that configuration, t represents the fibre round-
trip time, if the laser diode round-trip time is neglected.
In this so-called ‘external cavity-coupled laser’ configu-
ration, Py is usually small, perhaps 0.001. If there is a
nonzero reflection at the right-hand side laser diode facet,
that is, between the laser diode and the fiber, the same
result again applies, as long as the round-trip time in the
laser diode and its losses remain negligible compared to
the fibre round-trip time and loss. Note that P in eqn. 20
represents the total dissipated power. The power lost in
the fibre, if any, should be subtracted from P to obtain
the actual output power. Our result in egn. 20 essentially
agrees with that in Reference 12.
Let us now consider a conventional laser diode with
facet power reflectivities P, and P}. Setting G; = G and
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| = G’ in eqn. 19 we obtain

AfP = (hf/2m)t2{(1 — PR)/</(PR) + (1 — PR/J(PR)}*
(21)

The factor in braces in eqn. 21 can be written alternative-
ly as

(r+r)Yg>—1 (22)

where g2 = 1/rr' is the single-pass power gain. This latter
expression shows that if the laser gain, the total output
power and the diode length are kept fixed, the linewidth
Af is proportional to (g*r + 1 /r)?, whose minimum value
occurs when r = r' = 1/g, that is, in a symmetrical con-
figuration. If instead we choose r = 1, the linewidth is
(g + 1/g)*/4 > 1 times the minimum value.

In a symmetrical configuration: P = Py, and we
obtain

AfP = 4(hf2m)c (1 — Pg)*/Pg 23)

This formula should be compared with the result that
follows from the ST formula

AfP = 4(hf/2m)t ~*(log (1/PR)* (24)

When Pg =001, the ST formula in eqn. 24 under-
estimates the laser linewidth by a factor of about 4.6. The
difference between eqns. 23 and 24 has been pointed out
before [4, 5].

Note that in the symmetrical configuration being con-
sidered, P = 2P, if P, represents the output power per
facet. The output powers from the two facets can be
recombined with the help of a beam splitter outside the
laser because they have a definite relative phase (the
nearest axial modes, however, would recombine into the
other beam splitter port because they have opposite rela-
tive phases).

5 Travelling-wave oscillator

A typical travelling-wave oscillator is shown in Fig. 1d.
There is a single partially reflecting mirror with power
reflectivity Pk, and a laser diode along the closed path
free of reflections at the end facets. This of course is an
idealised situation. Spontaneous emission excites both
clockwise and anticlockwise propagating modes. These
two modes have no phase relationship and can be con-
sidered independently of each other. In fact, one can
always think that there is a nonreciprocal device along
the path that pushes frequency in one of these two modes
out of the laser diode gain curve, and therefore that only
one mode (say, the clockwise mode) is to be considered.
Application of eqn. 1 to travelling wave fields would lead
to a useless 0/0 result. This is why we must use the more
general formulation in eqn. 2. In the present case the
‘adjoint’ fields are simply counterpropagating fields.

Using. as before, a transmission line analogue with
arbitrary but slow variations of G"(z), eqns. 2 can be
written

AfP = 4[hf/2r:}{j (G'|VI|*+ R JZ}

x {jl(c’w PR ) dz}

X '[(C”V*V—l— LIndz|~? (25)

where, as in Section 4, we have
G'/R" = C"/l! = G} k=(C"2nf —iG")/G, (26)
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and

V(z) = exp {f Izk{z) dz}' I(z) = G. V(2) (27a)
0

Vi(z) = exp {—i J:k(z) dz} I'2)=G.V'(2) (27b)
0

The forms in eqn. 27 are applicable to a medium whose
parameters vary smoothly with the axial z-co-ordinate. If
this were not the case, reflections would take place and
we would not be dealing any longer with a ring-type
cavity. Note that ¥(z) and ¥(z) in egn. 25 can be multi-
plied by any complex numbers without affecting the
result. When the expressions in eqns. 26 and 27 are intro-
duced in eqn. 25 we obtain, without approximation,

J‘{G"] VI?+R"|1]?) dz
= .[(G"l VIE+R'|I')dz=G.(y—1) (28a)

j(C"V'V + ICI'Ndz = 2C"L (28b)
where the integrals are over one round trip, y denotes the
round-trip power gain, and [’ the round-trip path length.
Therefore

AfP = (hf2m)r=2(y — 1) (29)

In this expression, Af is the laser full half-power linewidth
and P the total dissipated power. If the ring-type cavity
does not suffer from any internal loss, but the power is
coupled out with the help of a beam splitter of power
reflectivity P, then P represents the output power and
y = 1/Pg. Here the parameter 1 is again the round trip
time L/v,. The result in egn. 29 differs from the result in
egn. 20 which is applicable to a folded cavity, by a factor
of Py instead of \/(Pg) in the denominator. Of course, in
the limit where Pp — 1, both formulas coincide with the
ST formula.

6 Role of the outside medium

It has been indicated in the introduction that the laser
linewidth predicted by formulas 1-3 for some value of the
output power P is independent of the distance between
the laser and some matched detector of radiation, as orne
expects on physical grounds. Mathematically, this is
because the field in that region is in travelling wave form
exp (ikz). For such travelling waves it is well known that

J.{.s,[‘.'2 + uH?*) dx dy=0 (30)

the integral being taken here over the cross-section (xy).
Therefore, the medium between the laser and the
matched detector of radiation makes no contribution to
the integral to the denominator of egn. | provided that
¢ =¢ and § = pu, that is, provided that the medium is
free of dispersion. This medium makes no contribution to
the numerator either provided that it is lossless and gain-
less. Free space is of course the most common example.
One may be puzzled, however, by the fact that when
the medium is dispersive (¢ # &) but remains lossless and
gainless, our formulas predict that the laser linewidth is
influenced by the outer medium. Strictly speaking, a dis-
persive medium must be lossy at some frequencies.
However, these frequencies may be outside the frequency

5



