Fig. 2 shows typical electron field-effect mobility data as a
function distance from the Si/SiO, interface in both
(a) and DSPE-regrown SOS (b). The precipitous
carrier mobility with decreasing distance from the s phire
substrate in as-grown SOS has been reported previously® and
is consistent with the rise in microtwin density near ‘the
Si/Al,O, interface observed in XTEM studies of as-grow
SOS.
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greater depthsithe electsqn modility rises
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Tgreement with the ion channelling
XTEM studies of the erystalldgraphy of DSPE-regrown SO
cited earlier. However, the bility data from within about
50 nm of the sapphire substrate requires additional measure-

ats and consideration. These data could be due to a small

residual defect concentration, lower dopant activation (and
hence larger Dgbye length), very high Si/Al,O; interface scat-
tering or resolutign limits of the measurement technique.
Finally, in addition to significantly improving carrier mobil-
e DSPE procéss also reduced the statistical variation of
ility at distantes less than 100 nm from the sapphire
e error bars in Fig. 2 represent the full range of
on mobilities at the depth indicated for 12
randomly selected.devices fabricated from both as-grown and
SPE-regrown SOS:. This im

t density and to the con-
ical spread in defect

tion.
In conclusion, DSPE-regrown
excellent de¥ice-grade electron mobi
fabricated in
ell behaved
long-channel properties well into the submicrometce range of
lateral device dimehsions. Further work is i
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NATURAL LINEWIDTH OF
SEMICONDUCTOR LASERS

Indexing terms: Lasers and laser applications, Semiconductor
lasers

A formula is given for the natural linewidth of high-gain
lasers, which is applicable to arbitrary three-dimensional
geometries. This formula agrees with Petermann’s result for
lasers with transversely inhomogeneous gains (K-factor) and
with previous results for the effect of small mirror refiec-
tivities. It does not agree with the Schawlow-Townes (ST)
formula used by most authors in evaluating the « = An /An,
factor of conventional semiconductor lasers. The difference
between the two formulas is significant when the mirror
power reflectivity is less than about 0-6. Furthermore, the
modified formula gives directly the linewidth of lasers
coupled to long external cavities. Saturation effects, however,
are neglected in this letter.

It is well known that transverse inhomogeneities in gain
enhance the natural linewidth of high-gain lasers, by a factor
K > 1 (see References 1 and 2). By ‘natural linewidth’® we
understand the nonzero linewidth which results from sponta-
neous emission in the active medium, The theories in Refer-
ences | and 2, however, are essentially one-dimensional, I
would like to report a formula, derived from first principles,
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which generalises previous results to arbitrary three-
dimensional geometries, and make them more precise. Fur-
thermore, that theory shows that a K-like factor exists also in
the longitudinal direction. The fact that the ST formula is not
applicable when the mirror reflectivity is not close to unity
has been recognised carlier®~5, While this fact can sometimes
be overlooked®? for conventional lasers (error ~10%), it is
important to take it into account in the case of reduced reflec-
tivity lasers. The departure of this longitudinal K-like factor
from unity is not as large as in transverse directions, but it is
nevertheless significant when the mirror power reflectivities
are much smaller than unity. When R = 0:01, for example, the
laser linewidth Af is 4-6 times the value calculated from the ST
formula. The relationship between this longitudinal factor and
the K-factor has, to my knowledge, never been pointed out. In
the present letter, the transverse eflcet is let aside and only the
longitudinal effect is discussed in detail. For the sake of sim-
plicity, saturation is neglected. Therefore, formulas assuming
full saturation as the ones given, for example, by Henry®
should be multiplied by a factor of 2. Aside from this factor,
my result agrees with the Schawlow-Townes formula when
the mirror power reflectivity R is close to unity (low-gain
lasers), but the discrepancy goes to infinity as R— 0.

The laser field is viewed as amplified spontaneous emission.
Spontaneous emission is modelled by electrical currents J(r)
randomly oriented and d-correlated in space. The averaged
quantity ¢J.J*) is proportional to hf, where h denotes
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Planck’s constant and f the optical frequency, and to the nega-
tive imaginary part of the medium permittivity e. This rep-
resentation is discussed in detail, for example, in Reference 8.
The rest of the calculation is based on linear electromag-
netism.,

Let us consider a cavity with perfectly conducting walls
which encloses both the laser and the detector of radiation.
The medium permittivity ¢ and permeability u are in general
complex scalar functions of space r = x, y, z and frequency f.
The imaginary part of ¢ is split into &, — &,, where g, rep-
resents stimulated absorption (including absorption by the
detector) and &, represents stimulated emission. I consider
well above-threshold conditions in which the resonating field
E, H is almost in a single spatial mode. Under those condi-
tions, the product of laser (full half-power) linewidth Af and
dissipated power P (P = 2P, is the laser output power if the
internal losses are neglected and Py is the power per facet in a
symmetrical configuration) is given by

2

AfP = d(hfj2x) (1

/
J’al E|? fuf/ j(a’E" — /H av

where ¢ = 2nfe, represents the medium conductivity. I have
defined & = a(fe)/df, p' = &(fw)/df. These quantities would
respectively be equal to & and u if the medium were nondis-
persive, but dispersion is important in applications. For any
vector E, |E|? = E . E*, where the star indicates complex
conjugation and the dot a scalar product, and E* = E . E. The
integrals in eqn. | are over the cavity volume (which includes
as one recalls the detector), and dV = dx dy dz.

One important feature of this simple formula is that the
linewidth predicted for a given power is independent of the
distance between the laser and matched detectors of radiation,
as one expects on physical grounds. This is because travelling-
wave fields neither contribute to the integral in the denomina-
tor of eqn. 1, nor, trivially, to the numerator.

I have checked the validity of eqn. 1 for lumped circuits by
comparing it to direct calculations analogous in spirit to the
one made in Reference 9 for a simple LCR parallel circuit.
Note that for the high-gain lasers presently considered the
‘cold cavity’ obtained by suppressing the gain has a very low
Q-factor, and therefore the so-called ‘cold-cavity linewidth’
that enters into the Schawlow-Townes (ST) formula needs to
be precisely defined before any comparison can be made. In
this letter the cold-cavity linewidth is not introduced.

It is easy to show that eqn. | agrees with Petermann’s
result' if the laser structure is uniform in the longitudinal
direction and spatial changes of the modified permittivity &
can be neglected (' = o is the free-space permeability). This
approximation is reasonable for most semiconductor lasers.

Let us now consider an active homogeneous medium
between two partially reflecting plane mirrors of power reflec-
tivity R located at z = D and z = — L, respectively.

The formula used by Henry® can be derived either from
Af = average spontaneous-emission rate in the mode/2x x
number of photons in the mode, or from the ST formula (with
the cold-cavity linewidth defined as twice the imaginary part
of the complex resonant frequency). This classical result reads
(eqn. 26 of Reference 6 with the internal losses neglected:
g=u0,=L"In(l/R),x=0,P=2P, n, =1, and multiplied
by 2 for the reason explained earlier)

AfP = (hfj2n)v,/L)(In 1/R)? (2)

My eqn. 1 leads to a different result, namely
AfP = (hff2m)(v,/LY*(1 — R)*/R 3)

Clearly, eqns. 2 and 3 agree when R — 1, but the result in eqn.
3 is 112 times the result in eqn. 2 when R = 0-3, and 4:6 times
when R = 0:01, corresponding to a single-pass gain of 20 dB.
The discrepancy between eqns. 2 and 3 has been noted
before.*—3 The interest of my formulation is that it unites into
a simple comprehensive expression Petermann’s and earlier
results. Furthermore, it enables us to treat complicated
geometries.

To show with little mathematics that indeed eqn. 3 follows
from eqn. 1 for the configuration considered, let us use a
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transmission-line analogue of the laser described above: a
uniform active transmission line of real characteristic conduc-
tance G, terminated at z = 0 and z = —L by identical conduc-
tances G, representing the partially transmitting mirrors of
power reflectivity R followed by perfect absorbers of radiation
(I have checked that more realistic models to essentially the
same results). We have therefore

r= /R =(1—-G/G)] + G/G,) (4)

with all the quantities being real.

Let the active transmission line have an impedance per unit
length —R —il2nf and admittance per unit length
—G — iC2nf, where R and G are positive quantities such that
G/R = C/L = G}. An exp (—i2aft) time dependence is used
throughout. Let V(z) and I(z) denote the voltage and current
along the line and G the conductances loading the line at
z=0 and z= —L. One should use in eqn. 1 the correspon-
dences: E, H— V, 1: 6— G 8(z) + G 8(z + L), ¢—= C, i — L
(note that ¢ and px without primes would correspond to
complex capacitances and inductances involving losses or
gains).

The general egn. 1 leads then to the following expression:

AfP = 4lf20)G*{ | V(—L) |

+ | VOV )2

-2
[{CV’ =15 dz‘ (5)

the integral being taken from —L to 0.
Recall now the classical transmission-line formulas

Vizy=2Z +r/Z

I(2)/G.=Z —1/2 (6)
where

r=./R

Z =exp(ikz) k= (C2nf—iG)G, (7)

The resonance condition is Z(L)r = + 1 and the group veloc-
ity v, = G,/C.
Introducing eqn. 6 in eqn. 5 leads to eqn. 3, il we make use

* of eqn. 4 and of the above relations for Z(L) and v,. It is easy

to restore in eqn. 3 the n,, factor and internal losses. The ST
result in cqn. 2 would follow from egn. 5 i it were permissible
to replace in the denominator of eqn. 5 ¥* by | V2| and I* by
— | I?]. This, however, is not the case in general.

Another configuration of interest is an optical fibre of
length I with power reflection R' at the right end, and a
lossless laser of length L < [ at the left end. The laser pro-
vides on reflection a power gain ~1/R’ and a noise spectral
density hf(1/R’ — 1). For that configuration egn. 1 leads to a
linewidth Af given by

AfP = (1/4)(hf2m)(w/ LY*(1 — R)?*/R’ (8)

where v}, is the group velocity in the fibre and P the output
power. This configuration is that of a laser coupled to a long
optical fibre. However, instead of considering first the laser
diode and subsequently introducing a delayed feedback, as is
usually done, we choose to consider the fibre itself as a laser,
and the laser diode as an active load on that fibre. Direct
application of the ST formula to that configuration would
lead to quite incorrect results (because R’ is small). The
reciprocal dependence of Af on R’ when R’ < 1 given in eqn. 8
is, on the contrary, correct (see, for example, Reference 10).

In conclusion, a general formula for the natural linewidth of
high-gain spatially inhomogeneous lasers such as semicon-
ductor lasers, far above threshold, has been reported. For
lasers that have large transverse inhomogeneities, Petermann’s
K-factor is recovered (with some correction terms which we
will discuss elsewhere). For conventional lasers, we can
account for mirror reflectivities significantly smaller than
unity. This effect is particularly conspicuous when the laser is
coupled to a long fibre terminated by a small reflection or
when the mirror reflectivity is artificially reduced by coatings.
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The generalisation of our basic eqn. 1 to arbitrary bi-
anisotropic media has been obtained. It will be reported else-
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USE OF UNIDIRECTIONAL DATA FLOW IN
BIT-LEVEL SYSTOLIC ARRAY CHIPS

Indexing terms: Signal processing, Systolic arrays

We show how the architecture of two réceatly reported bit-
level systolic_: array circuits—a single-bit coefficient correlator
and a multibit convolyer>~may be modified to intorporate

irectional data flow, This. feature has some important
advantages in-terms of chip cascadability, fault tolerance and
S{blc wafcr-scare-lngggrau P '

e,

P 25 \\\
~Introduction: In umber of recent publications'?* we haxe
demonstrated how the_systolic concept, applied at the bit

colla

The success of these prog
igation of these architect
array have beer~published. The
iency to 100%>:* More

this letter as a
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array. The functi
sequence

where afli =0, 1, 2, ...,
Foemcicms ar.:d x{i=0, 1, 2, ...) represents a sequence of
input dat (signal) values. Fig 1 depicts a simple example

have given soifichconsideration to other factors which may
influence the design of future bit-level systolic array chips.
These include ease of cascadability, fault tolerance and poten-
tial wafer-scale intégration.

Recent work by Kung and Lam® have demonstrated the
advantages of having unidirectional data flow in fault-tolerant
processor arrays. Most faylt tolerance schemes which can be
applied to linear arrays involve the routing of information
around faulty cells. This in™urn can introduce significant
transmission delays between cells il long lengths of wire are
invelved. As a result, the clock rate must be reduced and the
system performance is degraded. This\problem can be avoided
in an array with unidirectional data flow by inserting latches
in all data sfreams which are rerouted around a faulty cell.
This does nol alterthe required data intéractions, since the
relative delay butween alhdata paths is zero. The degradation
in throughput rate_is avoided since the bypass propagation
can now occupy oneésentire clock.cycle:® System Mtency is, of
course, increased slightly. The same technique tannot be
applied to arrays with comtraflowing data streams, becquse the
between pathsswould be nonzero and hence the
would be corrupted. Similarconsiderations
hen cascading chips in either a hybrd

are also i
package or

system latches s a means\of buflering to prevent

off-chip or chip- ays from degrading system pec:
formance.
Previously published_architecturgs for the, correlator and

convolver have all invo
the aim of this letter to

d contraflowing data, streams. It is
esent modified versigns of both
jrectional .data flow. kg particu-
lar, we will show how very siibtle changes™o the ‘previous
bit-level circuits can produce such important_changes in
overall
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