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Natural linewidth of anisotropic lasers
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The natural linewidth of lasers is shown to be enhanced with respect to the value predicted by
the Schawlow-Townes formula when the gain is high and inhomogeneous in transverse or
longitudinal directions. A general formula for the linewidth enhancement is derived from first
principles: Maxwell's equations and the fluctuation-dissipation theorem, for media with
arbitrary bi-anisotropy and dispersion. The result is expressed in terms of an integral of the
resonating field over the cavity volume. For isotropic media (scalar ¢ and u), this formula
generalizes previous results by Petermann for gain-guided lasers, by Ujihara for lasers with low
reflectivity mirrors, and results obtained by other authors for lasers coupled to long external
cavities. The role of non-reciprocity is discussed.

1. Introduction
Schawlow and Townes (S-T) have established that the natural (full half-power) linewidth Af of a
well-above-threshold laser is 2n(Af.)?/ P, where Af, is the ‘cold’ cavity linewidth (defined as A/, but
with the gain suppressed). and P the number of photons emitted per unit time [1]. Saturation effects
are omitted. the populations of the upper and lower levels being assumed independent of time.
For most lasers. such as He - Ne lasers, various spurious effects are usually shadowing the natural
linewidth A7. But for semiconductor lasers (LDs for ‘laser diodes’) the cold cavity linewidth is large,
and the natural linewidth can be observed. Measured linewidths of LDs are. nevertheless. significantly
larger than the values expected from the S—T formula for two basic reasons: first, time changes in
the upper-level population induce changes in the real part of the refractive index. Because this effect
is related to saturation it will not be considered further in the present paper. Secondly, in spatially
inhomogeneous lasers. the coupling of spontaneous emission to the oscillating mode is enhanced.
This is the effect that we will now discuss. In the present paper, previous results are generalized in
a number of important ways:

1.1. Transverse effects

Our formula for a transverse linewidth enhancement factor K generalizes and makes more precise
Petermann’s previous result [2]. Indeed, our formula is applicable to arbitrary anisotropic three-
dimensional cavities. whereas Petermann’s theory is essentially scalar and one-dimensional. Our
integral defining K involves a permittivity factor &’ that was overlooked before. However. this factor
can be omitted when spatial changes in group refractive index are small. The K factor is found to
be of practical significance for any laser with high transversely inhomogeneous gain. and not
specifically for gain guided lasers (i.¢. lasers which do not support a true guided mode in the absence
of gain). Finally, we directly calculate the laser linewidth Af. It is not always a straightforward
matter to evaluate the laser linewidth from the amount of spontaneous-emission power coupled into
the oscillating mode.
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1.2. Longitudinal effects

When the single-pass gain of a laser is large (¢.g. He—Xe laser at 3.5 pm) and the mirror reflectivities
are correspondingly low, the linewidth is enhanced by a kind of longitudinal K-factor which is often
overlooked; but see a recent paper by Ujihara [3], We recover Ujihara's formula from the same
simple and general formula discussed above. Furthermore. when a laser is coupled to a long fibre.
we may apply to thefibre (loaded at one end by the LD) our formula. Our result is in essential
agreement with results obtained by other authors using indirect methods: considering first the LD
and. subsequently, introducing the fibre as delayed feedback. This morc complicated approach
seems to be unnecessary. as long as saturation effects can be neglected. Direct application of the
ctandard S—T formula to the fibre would lead to quite incorrect results. This is probably why the
direct approach has not been used before.

1.3. Anisotropy

The preceeding discussion applies to media. whether active or passive, that can be characterized by
a scalar complex permittivity. We are motivated to consider more general matrix (ot tensor)
permittivities for two reasons. One is a matter of principle: the formula that we first derived for
scalar permittivities [4] involves the square of the electric field (not the modulus square). It becomes
ambiguous for travelling-wave fields in ring-type cavities. In the more general formulation given in
the present paper, [ use instead the product of the field and of an adjoint field which represents waves
propagating in the opposite direction in a medium characterized by the transposed permittivity [5].
The two media are of course the same if the matrix permittivity is symmetrical and, in particular,
when it is a scalar. This new formulation removes previous ambiguities. The second reason is of a
practical nature: non-reciprocal ring-type cavities seem 1o be useful to minimize the noise. A degree
of non-reciprocity is provided by the Faraday effect, observed for example when light at 1.3 um
propagates in a YIG crystal immersed in a magnetic field. Such a non-reciprocal device may be
incorporated in a laser cavity. However. we still have a degeneracy (same resonant frequencies) for
counter-propagating waves. A twist of the cavity may help remove all degeneracies. The full
bi-anisotropy formalism is useful in such configurations.

In the present paper, we view the laser output as linearly amplified spontaneous emission, and
only the well-above-threshold condition is considered in which the field is almost in a single spatial
mode. Spontaneous emission is modelled as electrical current sources, according to the fluctuation—
dissipation theorem. Although the basic formulae can be found in Landau and Lifshitz [6]. a
generalization to bi-anisotropic media is needed, which will be presented in Appendix B. The rest
of the calculation is based on linear clectromagnetism. Surprisingly, I have been unable to find in
text-books on electromagnetism the formula for the excitation of a cavity by prescribed current
sources with the required degree of generality. This formula. which 1s new to my knowledge, is
derived in Appendix A from a variational principle with respect to first-order changes in the electric
field and of the adjoint electric field.

In the main text, I first recall the classical S_T formula and then derive the modified S-T formula,
and subsequently discuss a few special cases. The main purpose of this paper. however, is to derive
the general formula from first principles. Detailed applications will be reported later.

2. Derivation of the Schawlow-Townes formula

The derivation of the S-T formula follows from a simple circuit model. The active medium is
modelled as a constant negative conductance — G,o(G, > 0)and the cavity asa passive admittance
Y(f) = G +iB(f) (where the conductance G is a positive constant and the susceptance B is a
function of the optical frequency f), in parallel with —G,. At the resonant complex frequency
fo = f + if,. we have Y(/o) = G,. and therefore in the limit where fIf. = 0. B(f;) = 0 and
/= (G — Gy(dB/df) < 0. Spontancous emission is modelled as a current source I, driving the
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circuit. Its mean square is

IL,I* = 4hfG,df (1

for the spectral re '
) E[?gf\:llm(ll range. fof+ df. h df:nmes Planck's constant. Zero temperature is assumed. It i
g ard 1o show [rom Equation 1 that the spectral density in the load G is - e,

S(f) = 4hG,GIY(f) — Go| * o

. d

L unit time, P, is obtained by integrating over frequency the ratio S(f)/Af. Well above threshold. the

approximation G, = G can be made in the numerator of Equation 2. It follows that
PAf = 8nG’(dB/df)’ (3)

I[ B consists 0] d pdl d]lﬂl L( circuit, we !E ve: B — ] 21{ ml j[ N
1 B. i ] a [ f) f
: f fL P4 fC. ”'IUS dal resonance
{ f e 4“C- Ihc S 1 {01 "lu]a quo'-cd car IICI IO![OWS bccausc t]tc !.h.:}. Or Equd“o]l 3 15 Cqudl

to 2n(Af.)>, where Af. = —2G/(dB/d inewi
S0 G /(dB/df) denotes the full half-power linewidth of the cold cavity

3. General formulation

Let us n i i

e enoc‘i\;sil;e::;lhir; if;t:;ral fqrmulz:}tmn. We consider a.cavity with perfectly conducting walls

e gl e effegaon wn‘h complete population invertion (modelling the lasgr) and

i s .g];) atoms a!lm the grcr}md state (modelling the detector or some internal

e R g, d. \_rolume zntegrals will be over that cavity volume. The integration
stands for dx dy dz. In the cavity, the electromagnetic field obeys Maxwell’s equations

12nfB + K (4a)
‘ rot H = —i2gfD + J (4b)
with electrical and magnetic current source terms.

: e postu]at‘e a ln_lear‘ relationship between D, H on the one hand, and E, B on the other he
(the so-called ‘constitutive equations’). which we write in matrix for;n ; i

(szp) E
=M
H (mfs) )

wh . . . ) el " -
mnirgorr';? :}rﬁ x 6 mglrlx. \if’hl(.h is a !‘unctmn of x, y, z if the medium is inhomogeneous, and a
s f&uigcngven III‘ the medium is non-dispersive). The M matrix formalism dif;cu%cd
appendices, is very convenient even if one is i i Gl wh
] . : s interested only in crystals, i i
case M is block diagonal. For reci ok i i . e
_ j procal media M is symmetrical, and for | i 1
: ck diage ro ! ossless media, *
Vdprlﬁgej Fa‘ tilde md!cates transposition and a star, complex conjugation) il
; Sim“’n]vmg elEC[I'lCi.ill current J an_d magnetic current K are now lumped into a single 6-current
§ arly, the electric field E and its rotational are lumped into a 6-field, denoted F

ol - (2

The current I at the (real) fre i : ;
b ) frequency fclose to a resonant frequency f,, excites a ficld given by (see

rot E

[ Fi1dv

F(r) = F,(r) :
(f = f) | Fi(@M[ef)F,, dV i
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We now set the hermitian matrix
M+ M* = 2AM, — M) (8)

where M, cxpresses the medium gain (stimulated emission) and M, expresses the medium loss
(stimulated absorption). Schematically, M, represents the laser medium with complete population
inversion, whereas M, represents the detector which absorbs the radiation or any other lossy
medium. The spatial distributions of these two matrices may overlap. Equation 8 generalizes the
scalar relation ¢ = & — &,, where & denotes the imaginary part of the permittivity.

For a time-harmonic source, the power absorbed in the cavity is given by

P = [PMFdv 9)

where Fis defined in Equation 6 and given in Equation 7. (Fis to be understood as the r.m.s. value.)
However. the current I which models spontaneous emission is not a time-harmonic source but
a random function of both space and time. The stochastic average of the right-hand side of
Equation 9 divided by /1 f thus gives us the spectral density S( /) of the number of photons absorbed
per unit time in the cavity. From Equation 7 and 9 we obtain

([ FXMF, dV) || E)(r)) r) P(rs) YF*(r2) dV; Vs

S . - it [ e S :
() WS — L2 T F(eMIof)F, aVF

(10)

where dV| = dx,dy,dz,, and dV; = dx.dy,dz;. (The vertical bars denote the modulus and ¢ >
denotes a stochastic average.) The correlation of the 6-current [ at two space-points, which appears
in Equation 10, is derived from the fluctuation—dissipation theorem as Appendix B. Substituting
the result given in Equation B8. where the right-hand side refers only to the active part M, (see
Equation 8), into Equation 10. we obtain the spectral density of the dissipated photons in the cavity

(I E:‘M! ‘Fnr d V}( j lF:r* ME ‘F:J d l’/}
|f = L] BN (0M/ef)F, dVF
where the fact that M, is hermitian has been used. The term |/ — £,,| *in Equation 11 shows that
the spectral density is lorentzian. It is therefore easy to evaluate the product of the total number of
photons absorbed per unit time and the (full half-power) linewidth Af = 2f., if weset f;, = /; + if;
FxMF, dv)(| F;*M,F}dV)

|§ FL(@M[2f)F, dV[

S(f)

(1)

PAf = 2nS()fe = sn (12)

Equation 12 is the main result of this paper.

In the case of isotropic media ¢ and u are scalar quantities and the adjoint electric field can be

taken as equal to the resonating field. The general Equation 12 then reduces to
raf = su{migrav) | [wE - ungyav| (13)

where &¢" = é( fe)/df and §’ = (fW)/df = p,, usually.

It follows from Equation 13 that any matched transmission line linking the active part (laser) to
the absorbing part (¢.g. the detector) does not affect the linewidth as one expects on physical
grounds. Mathematically. this is because dispersionless travelling-wave field regions do not contribute
to the integral in the denominator of Equation 13, nor, trivially, to the numerator. It is easy to
verify that Equation 13 coincides with the S-T formula given earlier for a single LC-circuit. Let
us now consider transverse and longitudinal effects.

4. Transverse effects
The transverse effects are usually expressed by a linewidth enhancement factor K with respect to the

338

Natural linewidth of anisotropic lasers

prediction of the ST formula. Into this S-T formula enters the cold-cavity linewidth Af.. which can
be defined as twice the imaginary part of the complex resonant frequency, or in terms of the
resonating field

M. = 2{[RIEF QY]] [GIEF + Wit ) v (14)

The numerator in Equation 14 is essentially the dissipated power and the denominator the stored
energy. However. because we are dealing presently with high-gain lasers, the cold-cavity fields, E.,
H.. may differ vastly from the active cavity ficlds and it is not always permissible to replace the
former in Equation 14 by the active cavity fields E,,, H,,. However. if the loss ¢ and the group
permittivity & do not vary much spatially, any field can be used in Equation 14. and in particular
the active-cavity ficld.

If this is the case Equation 13 can be written in S-T form

PAf = 2n(Af.)' Ky (15)
where
Ky = {_[n;-:smf + u’IH,.,F}dL»}: J’{s’E,?, — WH) AV 3 (16)
generalizes Petermann’s result
K = {| |E, [ d.r}: | B2 dx : (17)

the integrals extending here over the x-coordinate. transverse to propagation, from — o0 0 + 0.
These K factors are larger than unity unless the fields have constant phases and the E and H fields
are Y0 out of phase, in which case they are unity.

5. Longitudinal effects

We now consider the plane-wave model in lasers whose material properties are independent of the
transverse x, v, coordinates. but depend only on the longitudinal = coordinate. The end facets of a
conventional laser diode with reflectivity less than unity alone introduce the kind of longitudinal
inhomogeneity that we are discussing,even if the active material is perfectly uniform along the z axis,
fromsay,z = 0toz = L.

The conventional formula for the linewidth of such lasers can be derived either from Af = average
spontaneous emission rate in the mode/2n x number of photons in the mode), or from the S-T
formula (with the cold-cavity linewidth defined as twice the imaginary part of the complex resonant
frequency). This classical result reads (Equation 26 of [9] with the internal losses neglected g = o, =
L 'In(l/R),x=0,P=2P, n, = |, and multiplied by two because we are in the unsaturated
regime)

AfP = (hf]2m)(ve/LY(In 1/R)’ (18)

where R is the facet power reflectivity, and o, the group velocity. Equation 13 leads to a different
result, namely

AfP = (hf]2m)(vg/LY(1 — R/R (19)
Clearly Equations 18 and 19 agree when R — 1, but the result in Equation 19 1s 1.12 times the result
in Equation 18 when R = 0.3, and 4.6 times when R = 0.01, corresponding to a single-pass gain
ol 20dB. Ujihara [3] recently noticed that Equation 19 rather than Equation I8 is the correct

formula. My formulation unites in a simple comprehensive expression both Petermann’s and
Ujihara’s results.
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Appendix A

Excitation of a cavity by a current

The purpose of this appendix is to derive a general formula for the field excited in a cavity by
preseribed clectric (/) and magnetic (K') current distributions at frequency /. The cavity is supposed
1o have perfectly conducting walls S. It may contain both active and passive materials. Its quality
Q-factor is supposed to be so high, and the excitation frequency / to be so close to the real part of
the resonant frequency £, of a mode of order m. that it is permissible to assume that the resonating
field is in that mode m. and is therefore of the form

E(r) = AE,(r) (Al)

where E, (r) denotes the free resonating field (normalized in arbitrary manner), and A a constant
proportional to the source strengths that we wish to evaluate.
We have

0 = flux through S of (E' x H) = [div(EJ' x H)dV = f(ﬁrol E' — E'rot H) dV
(A2)

for any vector field E' normal to the boundary on S. (Tildes denote matrix transposition. and the
integral is over the cavity volume.)

Let us now assume that H is a solution of Maxwell's equations with a source term at frequency
/- These equations are

rot H = —2#ifD + J (A3a)

rot £ 27ifB + K (A3b)

where J is the usual current density, while K is a fictitious magnetic current density often used in
electromagnetic theory, for convenience.
We postulate the following linear relationship

() - w2
et 2nifB §

where M( f) isa complex 6 x 6 matrix function of space and frequency. Most authors assume that
M is block-diagonal, but this is not always the casc.
Using Equations A3 and A4, the last expression in Equation A2 can be written

|(F'M(NHF — F'ydy = 0 (AS)
where we have defined the 6-vectors

E ) F' & I = £ M " A6)
rot £ rot E' B (0} i K (

Now it can be shown that the variation of the integral in Equation A3 is of second order at most
for a first-order variation of E', provided E obeys the Maxwell's equation in Equation A3 and A4.
Indeed, the Euler-Lagrange equations

ON[OE, = Z (d/ox){CAJB(CE,|cx,)} (A7)
j=1.23
for the function
by E
AE.CE) = U (A8)
rot E
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where the 6-vector U is any function of r, is
(Irot)U = 0 (A9)

(where [ denotes the 3 x 3 unil matrix and ‘rot’ is considered a 3 x 3 antisymmetrical matrix
operator) as one can show in component form. Application of this result to the integrand in
Equation A5 leads to Maxwell’s equations in Equations A3, A4, which can be written for the E-field
alone

A I,-'l"l'l

) j '_':.
(1 rot}M( = .J Wiz b g “(A10)

rot E — K)

Similarly, one can show that the variation of the integral in Equation A3 is of second order at most
for a first-order variation of E, provided E' obeys Maxwell's equations without source terms in a
medium characterized by the transpose M of M. All field functions are supposed to be continuous
and to satisfy the boundary condition on S.

Because of its variational properties, a first-order variation of the integral in Equation A3 with
respect to frequency gives

(f = L) J' Fl@eMiof)Fdy = [Fi1dv (All)

where f,, is the complex resonant frequency of the source-free field, and the real frequency f of the
sources Is supposed to be very close to f,,, so that the forced field can be assumed to be of the form
in Equation Al.

[f we now introduce in Equation All the relations
F = AF,; F' = BF! (A12)

we can evaluate the constant A (the constant B drops out), and the field E excited by the current
I is found to be

) | Fy1dv

F(r) = F,(r (A13)
which is the desired result. Note that normalization of the E,, or E}, resonating fields is unnecessary
because multiplicative factors would drop out. This relation implies a lorentzian frequency
response, as expected.

If the medium is reciprocal, the M matrix is symmetrical, and the field F| may be set equal to the
cavity field F,,. However, in a ring-type cavity with travelling-wave fields of the form exp (ifz). the
integral in the denominator of Equation A13 would then be almost zero. Such travelling-wave
solutions can be excited alone, without counter-propagating waves, only by travelling-wave currents.
so that the numerator vanishes also. Under such circumstances, Equation A13 is inconvenient. For
ring-type cavities, it is therefore preferable to take for the adjoint field E! the counter-propagating
field, which has essentially an exp (—ifz) dependence on the axial coordinate z. This term cancels
out the exp (ifiz) dependence of the E,, field.

For arbitrary M matrices, the two waves propagating in the forward direction and the two waves
propagating in the backward direction are non-degenerate, that is, their constants of propagation
are neither equal nor opposite. But for any field with resonant frequency £, in M, there is an adjoint
field in M corresponding to the same resonant frequency.

Appendix B

Correlation of the 6-current /

Spontaneous emission from atoms in the upper state (population ,) can be modelled by an electric
current density J and a magnetic current density K. These are random functions of space and time
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whose statistical properties are given below. The gain constant of the medium, on the other hand,
is proportional to the difference 7, — 7, between the population n, in the upper state that provides
stimulated emission. and the population n, in the lower state that causes stimulating absorption. For
a dielectric medium. this gain is expressed by the negative of the imaginary part & of the complex
permittivity ¢ Therefore we expect the variance of the electric current modelling spontaneous
emission to be of the form

CJI*y o« {nsf(my — m)H(=¢) (B1)

The ratio of the population density #, in the upper state to the population #, in the lower state
can be written in the form of a Boltzmann law

ny/n, = exp(—hflkT) (B2)

When the temperature T is negative the ratio n, /n, is larger than unity. If we use the notation in
Equation B2, Equation Bl reads

(JT*) o —gng: n, = {1 — exp (WkT)} ' (B3)

2H
The so-called ‘spontaneous emission factor’ ny, can be given an alternative form

n, = 1 — coth (hf]2kT)/2 (B4)

sp
In their book. Landau and Lifshitz use n, — } instead of n,,. The factor —1 plays a part only
when forces are evaluated (Casimir effect). It corresponds to vacuum fluctuations that we presently
ignore.

In the case where only the upper state is populated (complete population inversion), we have:
T — —0, and n, is unity. This is the case that we will consider henceforth, as far as the active
medium is concerned.

We are seeking the correlations of the clectrical current J and magnetic current K at two points
r, and r, for bi-anisotropic media. These media are useful to model, for instance, moving media or
media with spatial dispersion. The most general linear constitutive relations are here conveniently

written
(o) = e o)) = 2L
= L (BS)
B & H (H

where L isa 6 x 6 matrix, basically different from the M matrix defined in Equation A4 unless it
is block diagonal (¢ = 0, { = 0). In terms of the L matrix

M, M, 2mif(e — En'( TR
M = ( i |h) = ( mif (& Eu ') cH (B6)
My, M, —u ' (2mify)

Following the line of reasoning in [6], we arrive at the correlation for the 6-current C (r.m.s.
values)

J
Cr)Cr)*> = —hfanif(L — Lo, — 1) C = (K) (B7)

Unless L is block-diagonal, the J and K fluctuations are correlated.
What we need is the correlation of the 6-current / defined in Equation A6. After lengthy but
straightforward calculations we find

(LIS = —2hf(M + M*)o(r, — 1) (BS)

where I, = I(r,) and I, = IK(r,), which is a remarkably simple result. This result is in fact to be
expected because the positivity or negativity of the hermitian matrix M + M?* expresses the medium
loss or gain, respectively.
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