Dielectric-clad monopoles: A most necessary feature of any
antenna is that it must be an efficient radiator. Therefore the
loss associated with the cladding must be kept low. From
radiation-patiern gain and efficiency measurements made on
a selection of clad monopoles (as summarised in Fig. 2), the
following empirical relationship was found to hold:

n=ao(l=175tand.logV) . . . . . . (I

where j is the overall efficiency, o is the limiting efficiency of
the unclad monopole core with no cladding, tan d is the loss
tangent and V' is volume in cm?® of the cladding. The lengths
and diameters of the various clad monopoles are indicated
in Fig. 2.
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Fig. 2 Radiating efficiency of M,, ‘dielectric-clad’ discone
compared with efficiencies of series of clad monopoles
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Fig. 3 Resonance characteristics of series of dielectric-clad
monopoles as function of cladding diameter and permittivity

It can be seen that the radiating efficiency of the clad
discone is about 45%,, when the effect of mismatch has been
allowed for, and is just the extension of the characteristic due
to the clad monopole material M, from which the discone
was formed.

The materials used in the dielectric cladding should be
chosen such that the loss tangent is low for a reasonable
cladding volume or diameter to preduce the iequired
resonance-frequency reduction while still maintaining a high
radiating efficiency. Fig. 3 illustrates the degree of reduction
in the resonance frequency f; that is possible for a fixed mono-
pole length of 10 ¢m, as a function of the cladding diameter d
and permittivity ¢, ( fy is the resonance frequency of the unclad
monopole of the same physical height I and diameter d, as
the clad-monopole core). Form this data, for both ceramic
and water-filled monopoles, the following empirical relation-
ship was found to hold:

loge,
filfo = TLumehU. S
where & is a coefficient dependent on the core diameter do:
k= (0-01 dy+0-036)"" e e s

Based on these relationships, it was decided that the slant
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height of the discone should consist of 5 clad rods of M,
each IS cm long by | cm in diameter. It should also be noted
that, for the dielectric monopoles 1o be of use, the resonance
characteristic of the clad monopole must contain only one
resonance (the first quarter-wave resonance) in the frequency
range of interest.

Dielectric-clad discone: Fig. 4 shows the return loss of the
dielectric-clad discone over the frequency range 200-
1300 MHz, compared with an all metal skeletal version of the
same physical size as the clad discone. It can be seen that
there is a considerable improvement. It was also found that
dielectric cladding at the base of the discone produced a
proportionally greater effect on the low-frequency response
than was obtained by cladding the cone rods, thus indicating
that, by preferentially loading the discone to achieve the
desired result, it is also possible to reduce loss. Completely
encapsulating the discone in a high-permittivity material does
not maintain the required broadband behaviour.?

100 fi(vewr3) 500 1000
frequency, MHz

Fig. 4 Return loss of skeletal discone, with and without
cladding

A recently available material having & ~ 900 and
tand =~ 0-2% (as well as excellent frequency- and temperature-
stable dielectric properties) will enable the radiating efficiency
of a discone clad with this material in the manner described
to approach 95 Y%.
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MICRO BENDING LOSS OF MULTIMODE
SQUARE-LAW FIBRES: A RAY THEORY

Indexing terms: Optical fibres. Optical-wareguide theory

Using ‘a simple ray theory, we show that the steady-state
microbending loss of multimode square-law fibres is equal 1o
8;/AdB/m. We have defined A = An/n, and 7 is the power-
spectral density of the fibre axis curvature in any meridional
plane at the natural frequency of ray oscillation, expressed in
reciprocal metres. The steady-state irradiance distribution in
the fibre core is also given.

It is well known that random bends of multimode optical
waveguides cause the amplitude of the rays to increase on the
average.! Eventually, the rays are lost to the outer parts of
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the guiding system, as shown in Fig. 1. This effect, called
microbending loss, is of great practical importance in fibre

" optics. In the present letter we derive new simple expressions
for the steady-state loss and the irradiance distribution in
the fibre core, using a ray theory.
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Fig. 1 Schematic representation of amplitude of ray in multi-
made fibre

'Thr:'m}'s are sinusoids whose amplitude grows or decays in random fashion under
the influence of the curvature C(z) of the fibre axis

Large-capacity optical fibres have index profiles that do not
depart very much from square laws. Because the curvature
spectrum is usually broad, the fine details of the index
profile do not very much influence the microbending loss.

A truncated square-law profile

o LA Cgh 8 SR Tl §
l”u“—ﬁ). .\'|2+_}’|2 > 1
where we have defined
e N N

is therefore a realistic model for many graded-index multi-
mode fibres.

Let x = &(z), y = y(z) describe the distorted fibre axis.
We define the curvature laws '
C(2) = d?* 3[dz? C,=a=3lazr oo o {3)

and assume that C,(z), C,(z) are stationary Gaussian random
processes of zero mean and microscopic correlation. The
spectral power density of these processes is

*

;u.r=2J (Cx, (2)Ce, (240 cOS(R, , OAE . (4)

u

where 7  denotes an average over a large number of similar

~ fibres (ensemble average). Alternatively, 3., 7y can be defined

for a single fibre by spatial averagings, since CXz), C,(z) are
stationary. Q. = x.[v/(24), Q, = y./y/(2A) denote the angular
frequencies of ray oscillation.

The probability density £ that a ray has position x, y and
slope x yatz and time ¢ is the solution of the Fokker-Planck
equation,

GPlez+ v, e, e,)ePlét = (3. /BANE® Pléx,* +&* Pléx,?)
+ (7,/84) (azpﬂra.Vlz'i'aszayzzj ~ i o T (5)

where vy, y; have been defined in eqn. 2 and

Xy = X[V(248), y3 = ¥\ (2A), X = dxjdz, y = dy|dz,

e = X7+ 0% e, = 0+ 2 S e e lG)

The excitation conditions are assumed to be such that P
depends on vy, v, only through the sum ¢,, and on y,, ¥» only
through the sum e;. The group velocity v, differs from a
constant if the fibre material suffers from inhomogeneous
dispersion. An explicit expression for v, wa given in Reference
2. The right-hand side of eqn. 5 expresses a diffusion in the
phase space x,, xy, )y, y» caused by microbending. To obtain
this result, we used Unger’s expression in Reference 1 for the
ray position x(z), y(z) and Siegert's results on first-passage
probability.* Some of the details are given in the Appendix.
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We neglect the optical losses in the core and the transmission
of slightly leaky rays. Thus a ray is lost to the cladding when
e = e, +e, reaches unity, The boundary condition to impose
on P is therefore P = 0 when e = |.

In the following, we discuss the continuous-wave operation,
with ¢P/ét = 0. We assume that the fibre profile and the fibre
axis deformations are circularly symmetric, x. = y. = r,
7= = Jy = 7. We also assume that the excitation is circularly
symmetric, that is, P depends on e,, e, only through the sum
¢ = e.+e,. The steady-state solutions Pn(z, x,,xz, y, ¥2) of
eqn. 5 are easily found. We have

Pon=e 4 I (onet)exp(—va2yz/8A) . . . . (D
where

e=x 2+ttt L L . . . . . (B

J, denotes the Bessel function of order 1, and ¢, the mth
zero of Jy, e.g. v, = 3-8317. The lowest steady-state loss is
therefore, for m = | in egn. 7,

loss=T7969y/A dB/m . . . . . . . (9

This result is about 25 % higher than Marcuse's approximate
result in Reference 4, obtained with a modal theory.*

The steady-state irradiance in the fibre core is obtained by
integrating P,, in eqn. 7 with respect to x; and y;. The result
of this integration is

I{ry = Jolomrit)=dolts) « « + . .« . + (10)

The variation of the irradiance in the fibre core given ineqn. 10
is plotted as a function of the normalised radius r/r. in Fig, 2.
For comparison, the irradiance in straight fibres excited by
Lambertian sources is shown as a dotted line. Note that, in
square-law fibres, the far-field irradiance patterns are similar
to the near-field patterns.

irradiance

Fig. 2
Plain line shows steady-state irradiance in the fibre core for Gaussian deformations
of the fibre axis, Dotted line shows irradiance for an undeformed fibre excited
by a Lambertian source

In conclusion, using a simple ray theory, we have obtained
new accurate expressions for the steady-state loss and the
irradiance of circularly symmetric fibres with random bends.
For profiles that may not be amenable to analytic solutions,
ray techniques are more economical than modal techniques,
For such cases, the present theory may be used as a guide line.

Appendix: Let us first consider the square-law medium in
eqn. | without the cladding. Let x(z) denote a ray trajectory
in the xz-plane and let C(z) denote the curvature of the fibre
axis. The subscripts x are omitted in this Appendix for brevity.

;c:.FOI:sa 2-dimensional fibre, there is exact agreement between our and Marcuse's
U
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The complex ray amplitude X(z) defined by
X(2) = Qx(D)+ixz), x=dx/dz . . . . .(lla)

is given by'

X() = X(O)exp(—iQ2)+i [ CQexp (QE-DKE (1)

0
for any curvature law C(z), provided
e= | X|*R2A= 23wt . . . . . . . (12)

does not exceed unity. If C(z) is a stationary Gaussian process
of zero mean and microscopic correlation, the conditional
probability that a ray has amplitude e at z, given that
e(0) = ey, is found from eqn. 11 with the help of elementary
transformations:

Ple, zleo) = (2/3)exp [— 2e+eo)/Zllo(dn/(eeo)/2) . . (13)
where
FE=EEIR S N L e s e e k)

3 is the power-spectral density of C(z) at € and [, is the
modified Bessel function of order zero. It follows from
eqn. 13 that

LR AR e o w e s s " w i TE5)
&2 — e = o2+ (2P - - o s . (16)

where < > denotes an ensemble average.

We now wish to account for the fact that some rays do
reach the cladding, that is, e does exceed unity for some of the
fibre samples. These samples do not contribute to the average
transmitted power. Let us recall Siegert’s results on first-
passage probability:? consider a random process e(z) and
let P(e, z|ep) denote the probability density for e at z, given
that e(0) = e,. If the first and second moments A(eo) and
Bleq), defined, respectively, by

el

LT :
A(eo) = lim ——J (e—eo)P(e, Azle)de . . (17)
Az -0 Az
and
i '
B(eg) = lim A5 | (e—eg)? Ple; Azleg)de . . (18)

Az==D - w
Q

exist, and all higher moments tend to zero faster than Az when
Az — 0, the probability f(z|eo) that e(z) does not exceed unity
between 0 and z is the solution of the Fokker-Planck equation

i o
(,—f L e e R )
Oz

":
— = Aleo) 7~ +3B(eo) Taal
% .

f(0ley) = 1 Jzil) = @

For the conditional probability in eqn. 13, it follows from
eqns. 15 and 16 that A(e,) = /2, Bleg) = yeo. The higher
moments tend to zero faster than Az when Az— 0. Thus the
average ray transmission [(Z|eo) is the solution of
iﬂé(eni) TR e ey
0z cea ceo
f0leg) = 1, f(E|1) =0, 2= yz/]A
It is not difficult to show that the operator on the r.h.s. of
eqn. 20 is the first term of the r.h.s. of egn. 5 in polar co-
ordinates. The l.h.s. of eqn. 5 corresponds to the surviving
terms of the space-time Liouville equation given in Reference
5. The full details will be given elsewhere.
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DECISION-DIRECTED REFERENCE CARRIER
GENERATION IN AN AUTOCORRELATION
RECEIVER

Indexing terms: Demodulation. Error statistics. Phase-siift
keving

A receiver for an asynchronous spread-spectrum system is
described with special regard to initial synchronisation and
error probability in the steady state for a 2-p.s.k. system. The
results of simulations and measurements for an analogue
and a digital version of the receiver are presented.

The concept of modulation means combining an information
carrying signal with a carrier. To separate this information
from the carrier, the receiver must know something about the
carrier function. In the ideal case, the receiver uses an exact
phase-synchronous replica of the carrier function. There are
problems of phase synchronisation if the autocorrelation
function (a.c.f.), which is frequently used as phase indicator,
is flat almost everywhere, as the a.c.f. of a broadband carrier.

slt) qelt)
O -
qlt)
O =
L,m prvg I i)

Fig.1 Modulation (). demodulation (1) and remodulation
)

The method described here benerates the replica r(r) of
the carrier function directly from the received signal by a
decision-directed process. The system shown in Fig. | has
only one stable state, i.e. r(z) is a periodically repeated func-
tion, if the equation

[qo ()= ([g(ho D]V qul0) = qett) - . (1)
has one and only one solution

qe(t) = q(0)
The operators are defined as follows:

(@) q)o c (1) = s(t); modulation of a carrier c¢,(1) b\
information g(1). ¢,(t) is the periodically repeated carrier
function c(1).

(b) s(t) ~e,(1) = q(1); demodulation of the signal s(t) by a
carrier ¢,(1) gives the information g(1).

(¢) s(1) V q(1) = c,(1); ‘remodulation” (carrier regeneration) of
the signal s(1) by the information g(t) gives the carrier ex(1).

For the special case of a 2-p.s.k. spread-spectrum system with
information q(t) a binary signal with bit length T  and ampli-
tude +1.and e(!).a binary signal of m subpulses, two stable
states: exist if the operators are defined as follows (the sub-
pulse length is T/m; m is called the spreading factor):

o : multiplication.

= : multiplication followed by a short-time ir}tegralic)n
threshold decision and sample-and-hold operation (cor-
relation receiver).
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