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Abstract. When laser diodes are driven by high-impedance electrical sources, the variance of the number
of photo-detection events counted over large time durations is less than the average number of events (sub-
Poissonian light). This paper presents a Monte-Carlo simulation that keeps track of each level occupancy
(0 or 1} in the conduction and valence bands, and of the number of light quanta in the optical cavity. When
there is good electron-lattice thermal contact, the electron and hole temperatures remain equal to that of
the lattice. In that case, the elementary laser-diode noise theory results are accurately reproduced by the
simulation, But when the thermal contact is poor (or, almost equivalently, at high power levels), new
effects occur (spectral-hole burning, temperature fluctuations, statistical fluctuations of the optical gain)
that are difficult to handle theoretically. Our numerical simulation shows that the frequency domain over
which the photo-current spectral density is below the shot-noise level becomes narrower as the optical
power increases.
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1. Introduction

Light is called sub-Poissonian when the variance of the number of photo-
detection events counted over a large time duration is less than the average
number of events. Equivalently, we may say that the photo-current spectral
density is below the shot-noise level at low Fourier (or baseband) frequencies.
It has been shown experimentally in 1987 by Machida er a/. that laser diodes
driven by high-resistance electrical sources may generate sub-Poissonian
light. This feature, which is of great fundamental and practical importance
treated theoretically in 1986 by Yamamoto ef al. on the basis of the laws of
Quantum Optics, may be understood alternatively as resulting from a birth—
death Markov process (see Arnaud 1997, 1995). Such processes, as applicable
to lasers in general, were discussed in particular by Jakeman and Loudon
(1991) and Loudon (983). The reader will find a clear mathematical discus-
sion in Gillespie (1992).
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The originality of the present simulation rests on the fact that electronic level
occupancies and light quanta are accounted for individually. the photo-
detection rate being derived from a Monte-Carlo simulation of the system
evolution in the course of time. All microscopic physical processes are (or could
be) accounted for. Electron level occupancies (0 or 1) fluctuate as a result of
internal electronic transitions (Auger transitions, thermalization and interaction
with the optical field stored in the laser cavity), pumping and optical absorption.

An exhaustive Monte-Carlo simulation has apparently not been reported
before, probably because of the high computer time required in the case of
bulk semiconductor lasers. But dramatic size reductions have been obtained
with microcavity quantum dot lasers (Ando er al., 1998) and two-dimen-
sional photonic-bandgap quantum dot lasers as recently proposed by Monat
et al. (2000). Because the active layers involve few optically active quantum
dots in the gain region, an individual account of each level occupancy 1s
manageable. Such devices. likely to be the next generation semiconductor
lasers provided technological problems are overcome to achieve efficient
electrical pumping, may be labeled ‘mesoscopic’ because of their small size.
Note that in optical computing applications, only small optical output
powers are needed, and small driving currents are desired.

For conventional applications, e.g., optical communications, milliwatts of
powers are usually required. In that case, our simulation results have to be
scaled up since it would be impractical to account for every level occupancy
in the case of bulk semiconductors. Scaling laws applicable to the linearized
theory need generalization if one wishes to take into account advanced effects
such as spectral-hole burning (SHB). Our numerical results help ascertain the
validity of advanced theories.

The main processes involved in laser light generation are recalled in Sec-
tion 2, and the numerical procedure is explained in Section 3. Numerical
results concerning photo-detection noise are illustrated in Section 4 and the
conclusion in Section 5. The analytical formula in the Appendix 1 derives
from the birth-death process through linearization, and the assumption that
the Fermi—Dirac (FD) distribution at some constant temperature 7 ade-
quately describes electronic level occupancies. An explicit expression of the
photo-detection spectrum is obtained for evenly spaced electronic levels
(spacing €) and a non-fluctuating electron injection rate J. It is shown that the
photo-detection spectrum depends only on the light absorption constant o
and the normalized pumping rate J* = Je/kgT.

2. Laser-diode processes

In the present section, the basic Physics of semiconductors, and processes
relevant to isolated cavities containing semiconductors in contact with a
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thermal bath, are first recalled. Pumping and optical absorption are discussed
subsequently.

One-electron energy levels in the semiconductor are supposed to be of the
form €, = ke, with k being an integer and ¢ a constant. The lasers considered
may incorporate quantum dots in the gain region. The evenly spaced-level
assumption is then justified by the mechanism of the level ‘repulsion’ ob-
served by Denton er al. (1973) in nanometer-scale irregular particles: the
probability that adjacent levels be separated by e is of the form ¢! exp(—¢?). a
sharply peaked function of e. Note also that quantum wells exhibit levels that
are evenly spaced on the average within each sub-bands i.e., the density of
states is a constant.

Some levels are allowed, whereas others are forbidden. Allowed levels may
be occupied by at most one electron to comply with the Pauli exclusion
principle. The electron spin, ignored in the present paper for the sake of
brevity, is discussed for example in Arnaud et al. (2000). Our model considers
neither electronic superposition states nor any strong Coulomb interaction.
approximations made in virtually all laser-diode theories. In semiconductors,
the allowed electronic levels group into two bands, the upper one called the
conduction band (CB) and the lower one, the valence band (VB). We suppose
that both bands involve the same number B = 100 of levels, and are sepa-
rated by G, forbidden levels as shown in Fig. 1. The bandgap energy Ge is
instrumental in determining the laser oscillation frequency, but it will not
enter in our model because of simplifying assumptions to be later discussed.
Only one VB is considered, but it would be straightforward to take into
account the heavy-hole, light-hole and split-off bands found in most semi-
conductors. N = B electrons are allocated to the allowed energy levels. For
pure semiconductors at 7 = 0 K. the N electrons fill up the VB while the CB
is empty. The electron-lattice system is electrically neutral.

Without a thermal bath, the electron gas reaches an equilibrium state
through Auger-type transitions: An electron gets promoted to upper levels
while another electron gets demoted to lower levels in such a way that the
total energy remains the same. The two electrons may belong to the same
band or to distinct bands, but only the former situation is presently con-
sidered. Auger transitions ensure that all the system microstates are explored
in the course of time so that electron gases possess well-defined temperatures
at any instant in each band. Nothing, however, prevents these temperatures
from fluctuating in the course of time. The Coulomb interactions on which
Auger processes rely are supposed to be weak, so that one-electron level
schemes are applicable. We have simulated energy-conserving processes and
recovered recently reported theoretical expressions for electron occupancies
given in Arnaud et al. (2000). When e < kg7 < Be, the FD distribution is
recovered with great accuracy. But kg7 need not be very large compared with
€ in mesoscopic devices, e.g., short quantum wires or quantum dots.
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Fig. |. Schematic view of the energy level system considered.

Note that laser noise depends, in general, not only on active level average
occupancies, but also on the fact that, even in the equilibrium (or quasi-
equilibrium) state, electrons keep moving in and out of these levels, causing the
optical gain to fluctuate. It is only in the linearized theory (see Appendix 1 of
the present paper) that statistical gain fluctuations may be ignored. Such
fluctuations are automatically taken into account in Monte-Carlo simulations.

Let us now consider the process of thermalization between the electron
gas and the lattice. To enforce thermalization, each electron is ascribed a
probability p per unit time of being demoted to the adjacent lower level
provided this level is empty, and a probability pg, where g = exp(—e/kgT)
of being promoted to the adjacent upper level if it is empty. Strictly
speaking, this thermalization model would be applicable to solids with
hphonon = €, but the detailed modeling turns out to be rather unimportant.’

'A more accurate modeling would require that the optical phonons be pictured in their non-equilibrium
state, and be coupled to pairs of acoustical phonons. The latter may reasonably be expected to be at
thermal equilibrium with the heat sink. It is clearly not the purpose of the present paper to go that far. A
preliminary modeling suffices to explain the main concepts and results,
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If p is large, thermalization is very efficient. This implies that electron-gas
temperatures in both bands are equal to the lattice temperature, i.e., are
constant in the course of time. The main purpose of this paper is to consider
the noise spectrum when p is not large, in which case. electron-gas tem-
peratures are ill defined. Near equilibrium, it is immaterial whether Auger
or thermalization transitions are dominant since both lead to well-defined
temperatures and, in the appropriate limit, to the FD distribution.
But because lasers are out of equilibrium systems, intensity-noise spectra
do depend on which one of the Auger or thermalization processes domi-
nates.

Spontaneous radiative electronic decay (involving radiation into free
space) may be accounted for by ascribing to each electron in the CB a
probability of dropping to some empty level in the VB. The noise associated
with this process is automatically expressed by the Monte-Carlo simulation.
For the sake of brevity, this process is presently ignored. Spontaneous decay
may be neglected when the driving current exceeds approximately 10 times
the threshold current.

Consider now an isolated system consisting of a single-mode optical cavity
resonating at an angular frequency o with /i = de, d being an integer, and
containing some electron gas. Precisely, we suppose that coherent interaction
takes place between the middle of the CB and the middle of the VB, i.e.
how = (G, + B)e. A prerequisite of the Monte-Carlo method is that the optical
field enters only through the number m of light quanta. That is, photonic
superposition states, as well as electronic superposition states, are not con-
sidered in the present theory. Quantum Optic effects, such as trapped states,
resonance fluorescence, and collective effects such as superfluorescence, are
indeed ignored. This conforms with the classical rate equation treatment of
lasers, found, for example, in Loudon (1983) and Meystre and Sargent
(1991). Recent rigorous calculations by Elk (1996) relating to the mesomaser
validate rate-equation methods by showing that even with few atoms (or
electron-hole pairs) typical Quantum Optic effects get washed out. Particle-
like models by Giulani (1999) and Jeremie er al. (1997) also show conver-
gence toward the rate equation model.

Stimulated absorption is modeled by assigning a probability m to electrons
in the lower working level to be promoted to the upper working level (if that
level is empty). Stimulated emission is modeled by assigning a probability
m+ 1 to electrons in the upper working level to be demoted to the lower
working level (if that level is empty). In the laser theory the ‘1° of the Einstein
expression m + 1 may be neglected in the steady state because m is a large
number. The term *1" should be kept however in the Monte-Carlo simulation
because the initial value of m considered is 0. Without that term, laser start-
up would not occur. Setting as unity the factor that multiplies the expressions
m or m + 1 amounts to selecting a time scale.
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Optical pumping (from a thermal source. for example) would be modeled
by assigning some constant probability to electrons in low VB levels to be
promoted to high CB levels, provided these levels are empty. and almost the
same probability for the opposite transition. In that case. the pumping rate
fluctuations would be close to the shot-noise level.

But the electrical current generated by cold high-impedance electrical
sources is almost non-fluctuating as a consequence of the Nyquist theorem, as
was first shown by Yamamoto. The nature of the detected light depends on the
ratio of this impedance to the intrinsic dynamic resistance of the laser as shown
in Richardson et al. (1991) and Yamamoto and Haus (1992). We restrict
ourselves to perfectly regular electrical pumping, i.e. to infinite cold imped-
ances. Quiet electrical pumping is modeled by promoting low-lying electrons
into high-lying levels periodically in time. every Ar = 0.2 ns, corresponding to
a pumping rate.J = 5ns~'. Because the time period considered is very short in
comparison with the time scales of interest. this prescription implies that the
pumping rate is nearly constant. This has been verified numerically.

Light quanta absorption is supposed to be due to the detector alone, that
is, no additional optical loss is being considered. Without loss of generality,
the detector is supposed to be located inside the optical cavity, as in many
early classical laser-noise theories. It is in fact immaterial whether the de-
tector is located inside the resonator or is coupled to the cavity through some
partially transmitting mirrors, as long as no spurious reflection occurs. De-
tecting atoms are assigned a probability am of being promoted to the upper
state, where 2 denotes a constant. Once in the excited state, detecting atoms
are presumed to decay non-radiatively back to their ground state.

3. Laser noise from a birth—death process

The method is best explained by considering first time intervals o7 small
enough that the probability that an event of a particular kind occurring
within it is small compared with unity, and that the probability of two or
more events occurring is negligible, e.g., o7 = 10""s. A typical run lasts
T, = 1 us, corresponding to 10% elementary time intervals. The total number
of events per run is on the order of 10%. Averaging is made over 20 inde-
pendent runs. Instead of the above pedestrian approach, the algorithm ac-
tually employed accounts more rigorously for the birth-death process and
minimizes the CPU time.

Stimulated decay of an electron during an elementary time interval o¢ is
allowed to occur with probability (m + 1)df, m being incremented by 1 if the

2If the lowest level happens to be unoccupied or if the highest level happens to be occupied. a rather
infrequent circumstance, the program searches for the next adjacent levels.
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event does occur. Likewise. stimulated electron promotion is allowed to
occur with probability mot, m being reduced by 1 if the event occurs. The fact
that the proportionality constant is omitted amounts to selecting a time unit,
typically, 1 ns.

Thermalization is required for steady-state laser operation. In the com-
puter model, thermalization is ensured by ascribing to each clectron a
probability pdr to decay to the adjacent lower level if that level is empty, and
a probability gpot to be promoted to the adjacent upper level if that level
is empty. where g = exp(—e¢/kgT) denotes the Boltzmann factor. We select
T =100 K, corresponding to ¢ = 0.891. Without absorption and pumping
(2 =0, J =0), the program gives level occupancies very close to those pre-
dicted by the FD distribution.

Only regular pumping is considered with an electron at the bottom of the
VB promoted to the top of the CB every At = 0.2 ns. This period corre-
sponds to a pumping rate J = 1/A¢ = 5 events per ns, and a pump electrical
current in the nA range. For a 1-um-long quantum wire with a 10 x 10 nm?
cross-section, this corresponds to 107 A/em?.

Each light quantum is ascribed a constant probability «dt of being ab-
sorbed by the photodetector, with o = 0.5ns~'. The average number of light
quanta in the cavity follows from the average-rate balancing condition
J = om, i.e., m = 10 light quanta.

Fig. 2 illustrates three of these elementary processes by means of a se-
quence of four frames extracted from a computer simulation involving only
10 levels in each bands. At the start, the system has already reached a sta-
tionary regime. A sample of the electron distribution is shown on the left. The
corresponding time and the number of light quanta stored in the cavity are,
respectively, 7o = 0.9486 ns and m = 2. The first event at 7; = 0.9488 ns is a
VB thermalization. Its effect is to decrement the system energy of ¢ since an
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Fig. 2. Four frames extracted Irom a Monte-Carlo sequence for 10 equally spaced energy levels in the VB
and the CB. Time increases from left to right. Insets give the number of light quanta m stored in the cavity
at some time. Arrows indicate electron displacements from one energy level to another.
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electron is demoted by one energy step. The second event at 72 = I ns is an
electrical pumping event that promotes the VB electron occupying the lowest
energy level to the highest energy level of the CB. The third event illustrates
stimulated emission between the prescribed lasing levels at 73 = 1.0111 ns. As
a result, the number of light quanta is incremented from m = 2 to m = 3.

Except for the pumping events, all the processes are governed by a Poisson
probability law. It follows that the whole system aside from pumping events
also obeys a Poisson probability law. Knowledge of the laser microscopic
state at time 1; implies knowledge of the next-jump density function. An exact
Monte-Carlo simulation (Gillespie 1992) of the laser evolution is then easily
obtained by randomly picking up the next event time 7;;; from a Poisson law
and, next, picking the event type from a uniform law weighted by the count
of potential events for each type. This method is more rigorous and more
efficient than simulations based on infinitesimal time steps. The time required
to obtain a photo-detection spectrum is on the order of a few hours on desk
computers.

The times #; of occurrence of photo-detection events are registered once a
steady-state regime has been reached, as is always the case for the kind of
lasers considered. The detection rate Q(¢) is the sum over k of (¢ — ¢ ), where
5(-) denotes the Dirac distribution. Considering that the photo-detection
events are part of a stationary process, the two-sided spectral density of the
detection rate fluctuation AQ(1) = Q(1) — O is (Papoulis 1965)

Ss0(Q) = 7 (1)

m

> exp(—jQu)
k

where the overline stands for averaging and Q = 2nn/T,, with n a non-zero
integer. Note that 2Sa0(Q) df, where ' = Q/2n, represents the power flowing
out of a filter of width df following the detector. For uniformly distributed
independent events, i.e. for a Poisson process, Equation (1) gives the shot-
noise formula Sxp(Q) = Q0.

4. Numerical results

Simulations will be reported for three values of the thermalization parameter,
namely p = 25000, 1000, 250ns ', and 7 = 100 K. Large values of p enforce
well defined. constant temperatures to the electron gas. Conversely. small
values of p correspond to large carrierlattice thermal resistances.

The total number of events during a run lasting 1 us are, respectively,
about 6.2 x 10%, 3.9 x 107 and 1.1 x 107. The number of events of various
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Table 1. Number of events of various kinds during a 1-ps run

pins) 25 000 1000 250
Pumping 3000 5000 5000
Detection 5004 5000 5000
Stimulated abs. 882 863 876
Stimulated emi. 5883 5865 5876

VB “cooling’ 155 286 151 9 819 009 2 848 060
VB ‘heating’ 155 036 238 9 569 413 2 619 666
CB ‘cooling’ 155 303 449 9 779 404 2824115
CB ‘heating’ 155 (058 595 9 534 806 2 599 576

kinds are listed in Table 1 for the three values of p considered. The number of
VB (resp., CB) “cooling’ events is the number of downward electron transi-
tions in the VB (resp., CB) due to thermalization. Likewise, VB (resp., CB)
“heating’ refers to upward electron shifts.

The following observations can be made:

— The first two lines of the table show that, over a run, the number of
detection events is essentially equal to the number of pumping events.
Since the number of pumping events does not vary from run to run, it
follows that the number of photo-detection events does not vary either,
i.e., the light is “quiet’. Non-zero variances of the photo-count would
appear only over much shorter durations.

— The next two lines show that the difference between the numbers of
stimulated emission and absorption events is nearly equal to the number
of photo-detection events. Because of the band symmetry, the number
of stimulated events are almost independent of p.

— The difference between the number of cooling and heating events cor-
responds to the power delivered by the pump in excess of the power
removed by the detector. This difference is almost independent of p.

The CB level occupancies are represented on the left-hand part of Fig. 3.
The CB electron occupancies and the VB hole occupancies are symmetrical
with respect to the middle of the bandgap.

For p =25000ns™', electron occupancies are very close to the FD distri-
bution, except near the edges of the band. A least-square fit shows that the
carrier temperature is 7, = 105.6 K for both bands. The quasi-Fermi levels
(referred to the bottom of the bands) are pcg = 60.2 and pyy = 40.8.

— For p=1000ns', a fit gives 7. = 132 K for both bands, pcp = 63.5 and
pyg = 37.5. There is a dip due to SHB at the lasing level shown by an
arrow. This dip is difficult to see in the figure, but it nevertheless impor-
tantly influences the noise properties of the laser.

— For p=250ns™", the dip at the lasing level is conspicuous.
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Fig. 3. On the left, electron occupancy as a function of the energy referred to the bottom of the CB.
Arrows point 1o the lasing level. On the right, normalized photo-detection spectra. Dots represent Monte-
Carlo results and solid lines are from (24). The thermalization rates are p = 25000 ns ' (top). 1000 ns~!
(middle). and 250ns~" (bottom).

The right part of Fig. 3 gives a comparison between spectra calculated
from Monte-Carlo data using Equation (1) and the spectrum obtained from
the elementary laser-diode noise theory (see Appendix 1) using the same set
of parameters, (x.7.¢.J). The top part of the figure corresponds to efficient
thermalization. The spectral density is below the shot-noise level up to a
frequency of 42 MHz. Notice the strong relaxation oscillation. There is a
good agreement between the Monte-Carlo simulation and the linearized
theory.

For moderate thermalizations, the spectral density is below the shot-noise
level up to a frequency of 25 MHz and no longer agrees with the linearized
theory. An increase in temperature from 100 to 132 K does not suffice to
reproduce the observed shift. The change in spectral density may be attrib-
uted to SHB and carrier heating.

The bottom curve corresponds to poor thermalization. The relaxation
oscillation is strongly damped. The frequency range where the spectral
density is below the shot-noise level now extends only up to 8 MHz.
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5. Conclusion

A Monte-Carlo computer program keeping track of the occupancy of each
level in the conduction and valence bands and of the number of light quanta
in the optical cavity was built. It was applied to regularly pumped mesoscopic
laser diodes, having equally spaced one-clectron levels in each band. Nu-
merical results focused on laser noise, especially the spectral density of the
photo-detection rate. When the electron-lattice thermal contact is good,
theoretical results based on linearization and the FD distribution are re-
covered. In particular, it is verified that sub-Poissonian light may be ob-
tained. But when the thermal contact is poor, as is the case when lasers are
driven to high powers, the simple theory is found to be inaccurate. Some of
the changes observed may be accounted for by temperature increase and gain
compression (due to SHB). But unexpected effects are also found. In par-
ticular, an increase of the spectral density at low frequencies is noted. The
program has been augmented to account for the intraband Auger effect that
tends to ensure that the electron and hole temperatures are well defined, but
possibly fluctuate differently in the course of time. It is also easy to take into
account spontaneous carrier recombination and excess optical losses.

Appendix 1

LASER DIODE INTENSITY NOISE FOR THE CASE OF EVENLY SPACED ELECTRONIC
LEVELS

A simple explicit expression for the spectral density of the photo-detection rate
is presently derived. The theory of laser-diode intensity noise for the case of
non-fluctuating (or quiet) pumps was first given by Yamamoto et al. in 1986. A
significantly simpler but strictly equivalent theory, based on rate equations,
was subsequently given by Arnaud and Estéban (1990). The present Appendix
is based on the latter with some changes in the way the results are presented.
Next, it will be shown that for electronic levels with even spacing ¢, the photo-
detection spectrum depends on only two parameters, namely the dimension-
less light quanta absorption constant # and a normalized pump rate J* =
Je/kgT. As in the main text, the parameter J denotes the pumping rate equal
within our approximations to the average light-quanta output rate Q. In the
present Appendix, ideal thermalization of the electron gas is assumed.

The main mechanisms involved in laser operation are stimulated emission
and stimulated absorption. Einstein has shown that the probability that an
electron in the lower working level be promoted to the empty upper working
level is equal to the number m of light quanta (or photons) in the optical
cavity, defined as the ratio of the optical field energy and hw, where /i denotes
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the Planck constant divided by 2z, and @ the angular frequency of oscilla-
tion. The probability that an electron in the upper level be demoted to the
empty lower level is equal to m + 1. These relations hold to within a constant
common factor that we set equal to unity. This amounts to selecting a time
unit. Because only far-above threshold operation is considered. we have
m > 1 so that the ‘1" in the expression m + 1 may be neglected. Spontaneous
carrier recombination is first neglected, but expressions for spontaneous
decay rates are given at the end of this Appendix. From the present view-
point, randomness in laser operation enters mainly because stimulated
transitions obey probability rather than deterministic laws. The alternative
interpretation of laser noise as resulting from the field spontaneously emitted
into the oscillating mode, though plausible in some respects, does not seem
able to lead in a natural manner to sub-Poissonian output light statistics (see
Arnuad and Estéban 1990).

In semiconductors, it may happen that the two working levels are both
occupied or that both are empty, in which case no transition may occur.
Stimulated absorption takes place when the lower level is occupied, and the
upper level is empty at an average rate denoted by 4 = L(n)m. In the opposite
situation, stimulated emission occurs at an average rate E = G(n)m. Here n
denotes the total number of electrons in the CB. Because m and n are large
integers and their relative fluctuations are small above threshold, they may be
viewed as continuous functions of time. It is also permissible to replace the
average value of any smooth function f(m,n) by f(,#). Overlines indicating
that average values are considered will be omitted when no confusion is likely
to arise, particularly in the expressions of spectral densities and after linea-
rization of the equations. Stimulated absorption and emission rates read,
respectively,

o =Ln)m+a(t), &=Gn)m-+e(t). (A1)

The independent white noise sources a(f) and e(z) express the randomness of
the transitions. Their spectral densities are equal to the average rates, i.e.,
Se=A=Ln)m, S, =E = G(n)m.

If the optical cavity-semiconductor system were isolated (no pump. no
optical absorption) the sum n + m of the number of electrons » in the CB and
of the number m of light quanta in the optical cavity would be a constant. It
would then suffice to know the evolution equation for m alone:

%—T:%E(g*.?fEK(H)m'F?’(f), (A2)

where we have introduced the net gain:

K(n) = G(n) — L(n). (A3)
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The average number 7 of electrons follows from the steady-state condition:
K(7) = 0. whereas the average number of light quanta m would depend or{
lhe‘ energy initially given to the isolated system. Because absorption and
emission processes are independent, the spectral density of r(t) = e(t) — a(t)
is the sum of the average rates:

Sy = [G(n) + L(n)|m. (A4)

But lasers are in fact open systems with a source of energy (the pump) and
a sink of energy (the optical detector). To obtain the evolution equation for
the nu.mb::r m of light quanta, one must subtract from the right-hand side of
Equation A(2) the loss rate 2 due to the detector, no other optical loss being
presently considered. Detection is a linear process of average rate Q0 = :xr:

involvh?g a noise term g(¢) whose spectral density equals the average rate.
Accordingly,

=om+q(t), S;=0=um (A5)

The parameter o represents the loss due to detector absorption. If the de-
tector is located outside the cavity, « represents the loss due to transmission
through partially transmitting mirrors.

The equation describing the evolution of the number 5 of electrons in

the CB, on the other hand, involves the constant pump rate J (quiet pump).
The two rate equations thus read

dm
L NP
==J & (A7)

In the steady state, the right-hand sides of Equations (A6) and (A7) vanish
and therefore, -

J = K(m)m = o = 0. (A8)

The above relation defines the steady state values of 7 and 7. given J — 0, a
and the K(n) function. ) .

For slow variations, the left-hand sides of the previous Equations (A6) and
(A7) may be neglected and thus 2(1) =.J = constant. In other words. the
detf:ctlon rate 2 does not fluctuate when the pump is non-ﬁuctuatin,g or
‘quiet’. This simple result holds because carrier losses and light quanta
losses, besides those due to detection. have been neglected. When the above
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equations are linearized and Am(t) = m(t) — i, An(t) = n(t) — 7 are Fourier
transformed. one obtains

d
1QAm = ',-":An +r—q, (A9)
J i
QAn=—9An—KAm—r*) (A10)
~

where Am, An are now functions of Q, and we have introduced the net
differential gain.

dK /dn

L (A11)

! -

Let us recall that r and ¢ are uncorrelated white-noise processes. Their
spectral densities, S, and S,. are given in Equations (A4) and (A5), respec-
tively.

The detection rate fluctuation AQ = « Am + ¢ is obtained from Equations
(A9) and (A10) after elimination of An, as a weighted sum of the two inde-
pendent white-noise terms » and ¢, in the form, AQ = ar + bg, where a and b
denote two complex functions of Q. The spectral density of AQ is equal to
|al’S, + !b|2S,f. Since the mathematical transformations have been given
earlier (Arnaud and Estéban 1990). only the result is given below:

Sao(Q) _ - 2m, Q0 — yPm*o’ (A12)
0 Pm2Q? + (ymo — Q¥ Jn)*
where
G(n)
_G( Al3
i K(n) ( )

denotes the population inversion (or “spontaneous emission’) factor, and Q.
the average detection rate. This expression vanishes at Q = 0 (quiet output).
It is unity if Q tends to infinity (i.e.. the fluctuation is at the shot-noise level).

Let us now evaluate the parameters y and n, entering into the expression of
the photo-detection rate spectrum. As in the main text model. each band is
supposed to consist of B one-electron levels separated in energy by a constant
e. It is presently assumed that the conduction and valence electron temper-
atures remain at all times equal to the heat bath temperature 7. This amounts
to neglecting, besides temperature fluctuations, SHB. The FD distribution is
applicable under the assumption that e < kT < Be. Under such conditions,
the total number n of electrons in the CB may be evaluated as if all levels
above the quasi-Fermi level were empty and all levels below it were fully
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occupied (and likewise for the VB). But stable laser operation is possible only
if the net gain depends significantly on n. It is therefore essential to employ
the exact FD distribution when stimulated rates are being evaluated. Energies
are counted upward from the bottom of the respective bands (see Fig. 1).
Because of charge neutrality, we have i

ne = F. = Be — F,. ' (Al4)

This relation determines the quasi Fermi levels as functions of the number n
of electrons in the CB.

For definiteness, let us suppose that the two working levels are located at
the middle of the conduction and valence bands, respectively, as shown in
Fig. 1. i.e. ke = ky = B/2. It follows from Equation (A14) that

O0=F, — kee = kve — F,. (A1S)
If we set
_ o\ (Be/2) — ne
X = exp( kBT) _exp( il ) (A16)

the upper and lower working level occupancies read respectively, according
to the FD formula:

| X

Ha= i n, = e (A17)
Thus the stimulated gain and loss constants are
A=l = A = gy ) =L =) = (AL8)
n)=n(l—ny) =——=, n)=n(l —n) =-——
T+ x)? ' (1+x)°
and
K(n) = Gln) = L(n) = +— (A19
L= o) = n)y= i
l+x )
The steady-state condition K(77) = o gives the steady-state value of x:
gy (A20)
X = . L
] + o

The population inversion factor thus reads
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G 1 (1 + a)?
n === = = 3 A2l
& K~ 11— 4o ( )

The differential gain parameter is obtained after derivation of K(n) with
respect to n and rearranging as

L dK/dn 2 dx ¢ X __6_1—13
7K x2—1dn kTl —x2 kT 2o

(A22)

When the above expressions of n, and y are introduced in Equation (A12), we
finally obtain the photo-detection rate spectral density as a function of the
frequency f = Q/2n with parameters o and J* = Je¢/kgT:

s 1{11‘-:z]£ .,
SQQU) = 4 1—a J* (A23)

0 LZ2F+(1-F)*

where F = (f/£.)% (2nf,)’= ([1 — 92]/2)J* and J* = Je/ksT.

In the main text, very good agreement between the numerical simulation
for a large thermalization parameter and the above analytical formulas was
found. Typical parameter values are o = 0.5, J* &~ 0.58. Thus, the relaxation
frequency f, ~ 0.074 GHz.

Within the present linearized theory, the spectrum would not be affected if
there were many upper working levels in the conduction band instead of a
single one, and likewise, many lower working levels in the VB. But when
thermalization is poor, the number of working levels in each band needs to be
specified. SHB is indeed of lesser importance when the number of working
levels is large.

If we suppose that spontaneous emission events satisfy the electron mo-
mentum conservation law, spontaneous carrier recombination occurs at an
average rate S(n) = on, where the constant ¢ depends on the optical mode
density, and thus on the dimensionality of the active region. This average rate
should be supplemented with a noise term s(f) whose spectral density is equal
to the average rate. Auger spontaneous carrier recombinations would obey
different laws not considered in this paper. Note that Monte-Carlo simula-
tions automatically account for all the noise sources associated with transi-
tion events.
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