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In a letter to this Journal, Greenberg and Green-
berg! used for the momentum of a photon the
expression

m= (fiw/c*)u, (1)

where fiw denotes the photon energy, ¢ the speed
of light in free space, and u the energy wvelocity
in the medium. This was criticized by Rateliff
and Peak,* who favor for the photon momentum
the expression

p=7ik, (2)

where k denotes the wave vector. For nondisper-
sive media with refractive index n, Egs. (1) and
(2) take respectively the forms: m=7w/en and
p="Hwn/c, explicitly considered in Refs. 1 and 2.

We would like to point out that these two
momenta, m and p, have different physical sig-
nificances that are now well understood. In brief,
the true (or mass-carrving) momentum m enters
in conservation laws established in the laboratory
frame, while the generalized (or pseudo) momen-
tum p enters in conservation laws established in
the medium frame.® In the latter case, the momen-
tum of the medium itself is ignored.

Let us first discuss circumstances where the
momentum m is most useful. Consider an e.m.
wave packet with energy W incident on a body in
vacuum. Clearly, the momentum p; taken up by
the body is the difference between the momentum
of the wave packet before and after interaction.
To evaluate this quantity we only need to know,
besides the seattering properties of the body, the
expression for the momentum of the wave packet
in free space; it is given by Eq. (1) or Eq. (2).
We have:

m=p=W/e.

When a wave packet is transmitted through a
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slab free of loss and free of Fresnel reflection (e.g.,
when e=p=n, where ¢ denotes the relative per-
mittivity of the medium, y its relative perme-
ability, and n its refractive index), the momentum
taken up by the slab is equal to zero because the
e.m. (electromagnetic) momentum is unchanged.
The slab therefore remains at rest if it is originally
at rest. It is, however, displaced in the process by
a length Az. To evaluate this displacement we
can state that the center of mass of the total
system,* slab plus wave packet, is invariant in the
coordinate system in which it is initially at rest.

One finds on that basis that the slab dis-
placement Az is in the forward direction and is
given by*~’

Az= (W/¢*) (n—1) /m,, (3)

where my denotes the mass of the slab per unit
length.

This displacement is most easily interpreted
bv assuming that Eq. (1), with u representing
the energy velocity of the wave in the medium,
is applicable during the time the wave packet
travels in the slab. For an isotropiec nondispersive
medium with refractive index », the magnitude of
uin Eq. (1) is ¢/n. Thus, as the e.m. wave packet
enters into the medium (with n>1), it loses
momentum. This loss is balanced by the (forward)
mechanical momentum (W/¢) (1—1/n) taken up
by the medium. When the wave packet leaves the
slab, opposite effects take place and the slab goes
back to rest. Because of the time lag existing
between the light pulse entering and leaving
the slab, the slab center of mass is displaced
(forward) by the length Az given in Eq. (3).

When ey, multiple reflections take place.
Nevertheless, the expression for the force F(¢)
exerted by the wave on the medium remains
simple. Let us consider a linearly-polarized wave
propagating in a multilayer medium under normal
ineidence (z axis). This foree F (£) is just opposite
to the sum of the changes A;(--+) in e.m. mo-
mentum flow that take place at the planes of
discontinuity, numbered =1, 2, ... . According
to Eq. (1), the e.m. momentum flow of a wave is
Su/c?, if S denotes the energy flow, for a unit-
cross-section area. Thus we have

F)=— Z Au(SyustS_u)/ct, (4)
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where the + and — signs refer to forward and
backward waves, S,=F;H,, S_=E_H_, and
uy=—u_=c/n, n=(eu)"*. Irom Maxwell’s equa-
tions, we have

Ey—popuH =0,
}Iﬂ:_fofui_Ei= 0.

Using also the fact that the total electric and
magnetic fields F=F, +F_, H=H,-+H_ are con-
tinuous at an interface, FEq. (4) can be written in
the simple form

F(t)=—4 T ol 2L+ B8], (5)

where E;, H; denote the total fields at plane 7.

For the case of a wave incident from free space
on a homogeneous medium (e, p), Eq. (5) re-
duces to

Ft) =3¢ (etp—2) () ' PE(D)H(E),  (6)

where F(t), H(t) denote the fields of the wave
transmitted in the medium, as shown before by
Shockley® and Hauss.® If we assume further that
e=p=mn, the mechanical momentum is, from
Eq. (6)

+e

pe=[ F(O)dt=(W/c)(1—1/n), (7)

as we have indicated before. Note that this me-
chanieal momentum is in part in the form of the
material being dragged along with the light pulse,
and in part associated with a surface force at
" the interface.® We are not concerned in this dis-
cussion with this splitting, which depends on
electro- and magneto-strictive effects, but only
with total forces and momenta.

The physical significance of m and p appears
most clearly when a light beam is refracted at a
plane interface. Gyorgyi® has shown in this Journal
that the law of refraction can be viewed as a
consequence of the conservation law (laboratory
frame)

d(m+ps) /dt=0, (8)
where m is given by Eq. (1), and p; is the momen-
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tum taken up by the medium. This momentum
can be evaluated from Abraham’s expression for
the body foree, which is consistent with Eq. (1).
The generalized momentum p, Eq. (2), is never-
theless useful because it allows us to ignore the
momentum p; of the medium in directions where
this medium has translational invariance. In par-
ticular, at a plane interface, the tangential com-
ponent of p is continuous as postulated by the
Descartes—Snell law of refraction. The fact that
the tangential component of p is continuous at a
plane interface is therefore not an indication that
the medium momentum is equal to zero in that
plane, but simply that in this particular formula-
tion the medium momentum is to be ignored.

A similar situation in fact exists for charged
particles (with charge e) traversing two plane
sheets of current having equal and opposite cur-
rent densities. This double-sheet creates a dis-
continuity in the potential vector A, which is
otherwise uniform. The laws of mechanics show
that the tangential component of the generalized
momentum p=m-eA is continuous at the inter-
face. The momentum taken up by the sheets,
however, is opposite to the change in frue mo-
mentum m of the particle.

If the medium has transiational invariance in
all three spatial directions, that is, if it is homo-
geneous, p enters in conservation laws of the form

d(p+p.)/dt=0, (9)

where p,=m*v, denotes the momentum of a
particle, with apparent mass m* and velocity v,,
that may interact with the e.m. wave packet in
the medium. Equation (9) is applicable, in par-
ticular, to absorbing bodies located in inviscid
fluids. The validity of Eq. (9), which can be
proved with the help of a Doppler-effect argu-
ment,' has been verified experimentally by Jones
and Richard.®

To interpret the phenomenon of radiation pres-
sure on an absorber located in a fluid in the labora-
tory frame, one needs take into account the
mechanical momentum p.’ that accompanies the
wave packet and the reaction force on the fluid at
the absorber.”® Note that, in general, m-+p,’ does
not add up to p (see Ref. 8). The reaction force
is therefore essential to understand the balance
of momenta. (For a detailed discussion, Eq. (3-2)

of Ref. 8 is most useful.) The balance of momenta
is illustrated in Ref. 10 for an artificial dielectric,
namely 'a meander line. In that special case,
because p.’ happens to be zero, the reaction on
the medium is just equal to

m—p=(W/c)(1/n—n) <0.

Similar considerations are presumably appli-
cable to the interaction of a light wave with a
slit of width Ar in a homogeneous polarizable
medium. The angular divergence of the beam is
most easily obtained from the eondition!? that
the phase-shift across the slit be of the order of
one, Ak-Ar~1 or Ap: Ar~7, but this formulation
is not unique.

A rather clear picture thus emerges from recent
works dealing with the momentum of photons in
polarizable matter. The true momentum is the
momentum m defined in Eq. (1). However, the
generalized momentum p, Eq. (2), is convenient
to study interactions taking place in homogeneous
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media if we are not primarily interested in the
momentum of the medium itself.
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