Modes of Propagation of Optical
Beams in Helical Gas Lenses

Abstract-—The modes of propagation of
optical beams in helical gas lenses are ob-
tained in closed form, within the approxima-
tion of Gauss, with the help of a quasi-
geometrical optics method.

The refractive index distribution of an ideal
helical gas lens assumes the form [1], [2]

nlx, x3) =1 — (g2t —x3)=1 + i€nx,
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inan x,x, rectangular coordinate system which
rotates about the system axis (z) at a spatial
rate 7=2n/l, [ being the period of the helices
(a positive helicity is assumed). In (1), 5 denotes
a real positive constant proportional to the
difference in temperature between the helices.
It is the purpose of this letter to give an explicit
expression for the modes of propagation in such
a medium.

With respect o the rotating coordinate sys-
tem. the paraxial ray equations relating the
position vector ¢ of a ray 1o its direction vector
pare

d=p+ g (2a)
p=ng+1p (2b)

where the upper dots denote differentiation with
respect to z, and
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Equations (2a) and (2b) are straightforward
generalizations of the well-known ray equations.
Note, incidentally, that if the axis of the optical
waveguide were curved, with a radius of curva-
ture p and a torsion 7, it would be necessary to
replace 7 in (2) by T+ 1. and subtract from the
right-hand side of (2b) a vector of magnitude
g~ ' directed along the principal normal. For
simplicity, we shall assume that the system axis
is a straight linc.

A general procedure to obtain the modes of
propagation in optical systems lacking meri-
dional planes of symmetry. such as the one
presently considered. is described in [3]. This
procedure consists of introducing two complex
square matrices Q and P which satisly the ray
equations, (2). We have. by definition.

O=P+ 20 (3a)
P =0 + <P (3b)

Using (3), it 1s not difficult to show that the
scalar field

Egolxsz) = expl—jkz)|Q| 1=

ER
‘cxp( —j=%PQ" ‘r) (4)

where k=w/¢ denotes the free space propaga-
tion' constant and |Q|, the determinant of Q,
satisfies the parabolic wave equation [3].

The (Gaussian) pattern of the beam de-
scribed by (4) is completely defined. in amplitude
and phase, by the complex wavefront curvature
matrix u=PQ " ! which, according to (3), obeys
the matrix Riccati cquation:

N=j+u —tu+ ut 15)

Because we are particularly interested in
beam patterns that are independent of z in the
rotating coordinate system, we set =0 in (5),
and solve for p. We have

' [cns v —siny i
Ju=ttany ] . (6)
I J Cos v + sin v

where
sin(2v) = 2

as we easily verify by substituting (2¢) and (6) in
(3). This is. in a simplified form. the result ob-
tained by Marié [2] from a totally different ap-
proach. Equation (6) shows that the maximum
and minimum widths of the beam are oriented,
respectively, along the (focusing) x, axis and
the (defocusing) x, axis, ¢ somewhat unexpected
result, '

4 being a constant, (3a) is easily integrated.
The matrix Q assumes the form

Q =explln+ 1] Q, el

where 0, denotes a constant matrix.

According to (4), the on-axis field (x=0) is
proportional to |Q] '/ The determinant of Q.
using the identity of Jacobi [4] and the fact that
T is traceless, is

[Q] = [Q| exp [ = trace (1)), (8)

The propagation constant of the fundamental
mode 1s therefore

B=k — trace(ju2) =k — zsiny. (9)

Notice that. because g is independent of k. the
group velocity éw/dfi 1s equal to the velocity of
light.

The higher order mades of propagation are
obtained [3]. [3] by multiplying the fundamental
solution, (4). by a Hermite polynomial in two
variables

He 5 20% 1507 0 {10a)

where the stars denote complex conjugate
values, provided Q, 15 normalized :

050, = 4ik YWu* — p) . {(10b)

Detailed expressions will not be given in this
letter. Note, however, that because Q in (10a) is
complex. the wavefronts of the various modes
do not coineide. This is a characteristic feature of
nonorthogonal systems. A notable exception is
the case of nonorthogonal resonators with
folded optical axes: at the end mirrors of such
resonators, @ 15 real and the wavefronts of all of
the modes coincide with the mirror surfaces.
Furthermore. the field assumes the same form
as in conventional resonators in the obligue
coordinate system Q 'x. In helical gas lenses,
however, the mode patterns are markedly differ-
ent from those of more conventional optical
sysiems
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