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Modes in Helical Gas Lenses

J. A. Arnaud

l. Introduction

The focusing properties of electrostatic lenses in-
corporating four coaxial 1 ¥
=V, +V, and —V, respectively,
for a long time in the technologv
ators.! These eleetrostatic lenses o
eoncept of strong focusing according to whict
sequence of converging and diverging lenses 1
absolute powers has a net focusing effect, provided the
period does not exceed a certain eritical value. Tien
and others® have discussed the application of this
technique to the guidance of optical beams, the four
helices being raised at alternately high and low tem-
peratures. Because of the difference in temperature,
gradients of refractive index are created in the gas
filling the space inside the helices. The gas thus acts
as a quadrupole lens whose principal axes rotate along
the system axis. Alternatively, the gas ean be re-
placed by a liquid with low optieal losses. Refractive
index gradients of the type considered can also be in-
duced in electrooptic materials by de electric fields.

Tien and others® gave an approximate expression
for the field of the fundamental mode of propagation,
applicable when the difference in temperature between
the helices is small. A more general expression has
been recently obtained by Marié® on the basis of the
scalar Helmholtz equation. In this paper. we shall
use a quasi-geometrical optics approach based on the
concept of complex point cikonal.® Explicit expres-
sions for modes of arbitrary order arc obtained.  (Pre-
liminary results were given in Ref. 5.)

In two-dimensional systems the modes of propaga-
tion of scalar waves can be represented by the product
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< Hermite polynomials in two complex variables. For small tem:

A general expression for the me

of a function of Gauss and Hermite polynomials
one real variable, as was first shown by Boyd
Gordon.® In the ease of systems with rotational
metry, Laguerre polynomials are to be i
Goubau and Schwering”). In the m
{ svstems such as the helical gas lens t!
1 pl of symmetry, it is neces
nomials in two complex vari:
e+ this paper self-contained.
of modes in Gaussian optics is recalled.

e m

In

: theory

Il. Modes in Gaussian Optics

As is well known, the cikonal equation of geometrical
opties is obtained by tituting in the wave equa-
tion field components of the form

¥(r) = Gir) explikSir)], (1)

where & = 2m/M\ denotes the frec-space propagation
constant and r a point in space. Keeping only the
terms with the highest power in &, an algebraic rela-
tion between the components of ¥S is obtained. In
the general case of lossy media this relation, called the
cikonal equation. involves complex parameters and
the solutions S(r) arc complex.  Even in lossless media,
complex solutions are of interest to account for diffrac-
tion effects.

The component 08/0z of VS on the z axis of a 2122
Cartesian coordinate system can be considered a func-
tion of 0S/0ry. OS/dxs, 21, ¥z, and 2. We shall make
the approximation that 3S8/9z is at most of second
degree in 08/0x;, 0S/0xs, a3, and 2:. This assump-
tion can often be made for paraxial beams provided
the cikonal equation is free of singularities in the do-
main of interest.

Let us consider the case of beams propagating in
a direetion close to the z axis in isotropic media. The
exact eikonal equation is

S
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Fig. 1. This fizure
used for the cikom
along the z axis in isotropic medis.

illustrates the paraboli
juation in the case of beam

(08/02)% + (d8/02:1)2 + (d8/07:1* = m¥zyrz),  (2)
where the refractive index an be written approxi-
mately

nlrgenz) =~ 1 = FxN(z)x, (3)

v, that n(0,0,2) is unity and
that the medium We have introduced a
matrix notation i Eq where column vectors and
square matrices are represented by lower- and upper-
case boldface letters, respectively, and tildes denote
transposition. X represents a point with coordinates
ry, o2, and N (2) is 2 2 X 2 symmetric matrix which
characterizes the focusing pl‘n])(‘ﬁiws of the medium
at some plane z; positive foc umw efieets, for instance
correspond to negative real definite matrices N.

Equation (2) can be rewritten. within the parabolic
approximation (illustrated in Iig. 1)

if we assume, for sin

28/0z = 1 + $XNx — §(38/0x) (05 /2x), (4)

where 0/0x denotes the gradient operator in the x;, @
plane.

Let S(rar’) denote the optical length of a ray going
from a point r’ to a point r; 8 is called the point eikonal.
Within the approximation of Gauss this function is,
at most, quadratic inx and x’.  Thus, the point eikonal
can be written

Sirr’) = d + 3XUx + XVx’ 4 32'Wx', (3)

where U and W are 2 X
isa2 X 2 matrix.

d, U, V, and W obey ordinary differential equations
that are readily obtained by substituting Eq. (5) in
Fq. (4). Weget

2 symmetric matrices and 'V

U+Ur=N, (6b)

V+ UV =0, (6 W + ¥V =0, (6d)

where the upper dots denote differentiation with re-

speet 1o 2.

The solution of E{'!. tia
i= 4 matrix Riceati equation that ea
: for speeial functions N(z) ¢
i constant in a fixed or rorating

Let us rewrite Eqs. (6b)—(6d “the case where the
oy coordinate system rotates at a spatial rate r about
the z axis. A rotation 7z of the z.0. coordinate svs-
tem about the z axis is econveniently wsed in matrix
notation by the transformation

z. Equation (6h)
n be solved in elosed
in particular, when
coordinate system.

N

x —» ¢~ Tiy (7a)
where
¢ |
= . (Th)
-1 40

To obtain the transformation of the parameters de-
fining the peint cikonal or the refractive index, it suffices
to "\]J(‘(lf\. that these scalar quantities have the same
ralues in the fixed and rotated coordinate svstems.

The laws of transformation are therefore obtained by
introducing Eq. (7a) in Eqgs. (3) and (5); We get
N = - TNeT=  (8a) U—se-TUTZ  (8h)

V—e Ty (Se) W —W. (8d)

Upon substitution of these expressions in Eq. (6),
generalized differential equations for U, V, and W
are obtained:

U—TU+ UT + U? = N, (9a)
¥ — TV + UV = 0, (9b)
W+ Vv = 0. (9c)

Beeause these equations are of first order, specifica-
tion of U, V, W at some plane (say z = 0) uniquely
defines these matrices everyvwhere,

To obtain the modes of propagation of optical beams
in lenslike media we simply have to expand the Green
function in power series of the source coordinates.!®
An asymptotic expression for the field radiated by a
point source located at some point r’ in the medium,
valid in the limit £ — o (short wavelengths), has been
obtained by Van Vleck!! in connection with quantum-
mechanical problems.**  This expression is

giria’) = i8(rx’)/ox or, b explikSirx")], (10}
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EZp.

(=) 'mhmaleSe s,

Fa—f: mi—
<1

Tt mi—y—fta

Hewm(Ei9) = z:

ad.y=

0 2= TPalgl(

where the vertical bars denote a determinant. The
phase of the square root is defined by continuity from
some reference plane. ¢(ryr’) in Eq. (10) is a scalar
wavefunction such that Yy*ds represents the power
flowing through a small area ds. In the case of optical
beams propagating in a dircction close to the z axis
in isotropic media, ¥ can be taken as niE. where n
denotes the refractive index and £ the magnitude of
the electrie field, assumed linearly polarized. When
Eq. (3) holds, n is almost unity and ¢ need not be dis-
tinguished from /.

In the case of lossless media
ph\sw 1 significance of the ex
(10) is straightforward because S represents in that
case the optieal pathlengt! r’ tor (phase shifts
at caustics and foca g 1 en into account),
The determinant in front of the exponential, on the
other hand, follows from power n require-
ments. Although these im-rp:.--';: I :
plicable to complex eikonals, tl
remains a solution of the wave equation. g
refractive index is analytic for eomplex r, an
tion that can almost always be made.

and real eikonals, the
ential term in Eq.

It turns out, very fortunately, that Eq. (10 i~- -
exact rather than asymptotie solution of the parabolic
wave equation when S(rir’) is at most quadratic in x
and x’ for every z, 2/, ie., within the approximation
of Gauss, Eq. (5)." Upon substitution of this qua-
dratic form, Eq. (5), in Eq. (10) the field radiated by a
point source is found to be

grr’) = [V explik(z + 3xUx + VX’ + 3'Wx')]. (11)

Note that because V is complex and varies with 2, the
determinant in front of the exponential contributes to
the variation of both the phase and amplitude of the
field.

We define now the modes of propagation at some
plane z as the coefficients of the expansion of ¥(rir’)
in power series of 7k’ and ikr.’. Nodes ean there-
fore be viewed as the fields radiated by imaginary
multipoles. Explicit expressions are ecasilv obtained
if we recall the definition of Hermite polynomials in
terms of their generating functions

a
m™ g™
Z e Hcm-,«lf.ﬁ, {123

I
wama=Q T !

exp(n€ — dign) =

where & denotes a 2
denote vectors,

X 2 symmetric matrix and n.
Explicitly we have?
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(13)

!

Jilmy — v —a + 3)lims — v — g 4+ or)!‘

=i —f

where exp. means that the series terminates when one
of the exponents becomes equal to zero. Tt is impor-
tant to notice that for any ronal matrix D with ele-
ments Ay, As we have

Hepyro(DEDOD) = 5 ™0w™H- _(E:6), (14)
a relation that readily results from the definition Eq.
(12) or Eq. (13).

Let us make use of these mathemarical resulis with

n = H»‘X", EE vz a=1W i (13)

and expand the right-hand side of Eq 11 0 powers

of ikzy’, thxs’. The coefficients are. o within un-
important factors,

Yonma{X,2) = |V bexplikiz + RXUX) Hewmpm:(VEgW & 16

I-fqn_atinn (16) gives the axial modes of propsgstion

in Gaussian optics in their general form. We note
that these fields depend on as many as twenty-two rea
scalar parameters whose variation with 2z is defined
by Eqgs. (6a)-(6d). To be more specific, we may
sume that the optical system under copsideration oe-
upies the half-space 2 > 0, the sources being loeated
me axial point (2 < 0) as shows

v on the left of the input plan called a
i system, is chosen such that the desired
1ons are produced at the input plane.
t <ot of modes given in Eq. (16) is bior-
thogonal 1o another infinite set denoted ¥ homs (X) (see
Ref. 9). Arbi voincident fields @(x) can therefore
be expanded in series of the modes Yomm, (X), the coeffi-
cients @pm, of the expansion being evaluated by in-
tegrating the product of $(x) and ¢, (X) at the input
plane,

Let us consider first the ©
= my = 0. In that case. the Hermite polynomials
in Eq. (16) are unity and the ficld configuration at a
plane z depends only on the symmetrical matrix U(2).
The curves of constant irradiance are cllipses if the

indamental solution, m,

i
S}é 4] kS

MODE GENERATING
SYSTEM OPTICAL SYSTEM

Fig. 2. The optical system under study is shown in the z > 0
half-space and the mode generating systemin the z < 0 half-space.
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Fiz. 3. Transformation of a Gaussian beam with circuier cvm-
F

metry (I), into an astigmatic Gaussian beam (f7 snd s bean
with general astigmatism (/77

=umDp
.....-Af."'

YWer

be defined. The waveir
have either a positive ¢
a negative curvature (diverging waves), or be saddle-
shaped, depending on whether the real part of U is
negative definite, positive definite, or indefinite. It
should be noted that, in general, the prineipal axes
of the constant phase curves, ellipses. or hyperbolas,
do not coincide with those of the constant irradiance
curves. These rather unusual configurations
are observed, for instance, when ordinary Gaussian
beams with circular symmesre are launched into a
system of cylindrical lenses criented at some angle
different from zero, modulo = 2. with respect to one
another,” as illustrarcd in I 3. The irradiance
patterns when m; and = erent from zero are
rather complicated. I, the wavefronts do not
exhibit simple s i the separable case, and they
are different for mode numbers.

We now apply these general results to helical gas
lenses.

i, may

ature (converging waves),

=)

I1l. Modes in Helical Gas Lenses

Helical gas lenses incorporate four coaxial helices
at temperatures +7, —T, +7T, and —T, respectively.
as shown in Fig. 4(a). Neglecting aberrations, th
refractive index distribution is approximated by a
hyperbolic law of the form® -

n(gfhxg) =1—n(n® — =1+ %5{.\-1. 17a)

-9 0
N= [ :| (17b)
0 =

in an z;,7, coordinate system that rotates at a spatial
rate r = 27/ p about the z axis, p being the period of
the helices; a positive helicity is assumed. 7 is pro-
portional to the temperature T of the helices; it is real
if the optical losses in the gas are negligible. This
assumption, however, need not be made now. TFor
simplicity, we assume that the optical waveguide has
a straight axis and that the refractive index is unity on
that axis. Because N is constant in the rotating co-
ordinate system, we shall use the differential equations,
Eqgs. (92)-(9¢), obeved by U, V, and W in that system.
We are particularly interested in solutions of the field
equation that are independent of z except for a factor

where

exp(az), where a denotes a constant, because these
invariant solutions form a simple basis for the expan-
sion of arbitrary field configurations.

It is clear from Eq. (16) that the field configuration
of the fundamental mode (m; = m. = 0) is invariant if
the matrix U does not depend onz. It is easily verified
that if we specify that U = 0, the solution of Eq. (9a)

is

i{cosy — sinw) 1
W ¥ r.am[*("“”’ =il , ] (18)
1 1leosy +— Sinw)
where we have defined
sin(2v) = 9% (19)

Assuming that the medium is lossless, o, that n is
real, the angle » defined in Eq. (19) is real when the
stability condition

n < 7 (20)

is satisfied. Because we are interested only in beams
that carry finite powers, we can restrict ourselves to
values of » included between 0 and = 4. Equation
(18) coincides with an expression recently obtained
by Marié® using a fotally differer ach and, in
the limit where » is very small ¢ with 72, with
an approximate pxpression :

Because U is a constant we can easily integrate Eq.

b :

(b)

Fig. 4. (a) Helical gas lens (H = hot, € = cold) with helices

of period p. (b) View in a meridional plane of symmetry of a

sequence of thin quadrupole lenses (f = 2/9p and —2/q9p al-

ternately), whose properties are analogous to those of helical
gas lenses.
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= .

vV = T-U)v,, (21)

where V, denotes a constant matrix, to be defined later.
The matrix T — U can be diagonalized using Eqgs. (7b)
and (18) and written

T — U = MDM"%, (22)
where
_[ 1 i{cosy — siny) 93
 Li(cosy + sinw i (23)
_ | Heosy — sinw 0
By r[ 0 —ileosy + sim-):|' 24)

The expression for the ¥V matrix given in Eq. (21) can
consequently be rewritten

V = MD=M-,
The factor [V|} in Eq. (16) becomes
[V]* = |Vol? exp[4Trace(Ds)z]. 24

The propagation constant of the fundamental mode is
therefore, from Eqs. (24), (26), and (16),

B =k — rsine (27)

Let us now look for solutions of Eq. (9¢) correspond-
ing to invariant higher order modes. The Hermite
polynomial introduced in Eq. (16) is essentially in-
variant, as we have seen [Eq. (14)], if V and W assume
the forms

V(z) = D(2)Vo. (28)

Wi(z) = D(z)W.D(z). (29)

where D(z) denotes an arbitrary diagonal matrix and

Vo, Wo constant matrices. V(z) has the desired form,
Eq. (28), if we choose

Vo = &M, (30)

the factor x = (kz)}? being introduced for later con-
venience. V(z) becomes, with that choice for V,,

Viz) = «D(z)M, (31a)
where
D(z) = eP=. (31b)
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Now substituting Eq. (29), with D(z) given by Eq.
(31b), in the differentizl equation, Eq. (9¢), and using
Eq. (31a), we get a linear equation for Wy:

DoW, + WiD: + MM = 0, (32)
which has the solution

(1/siny — 1 /cosy) "
i cotw I ooes — 1 =i

iWo/k = [

] (33)

Introducing these expressions, Eqs 1~ . 21 (23),

and (24), in the general expression of 1o to00 B (16,
the complete solution is finally obtained:
\f’mlmg(xﬂ) = exp(ikz)
* exp{'.irz[(ml + 1/2)(cosy — sinp) — (me 4+ 1/2)(cosy = sins |
% exp| — % tany[(cosy — sinvin? + (cosy + siny)x:?] |
X expli(tanshxiox]
 Hi -_-.—.-_.1: - ?jx-z(CGSV + sinv),xz - E’\'l eosy — sine _"\\": kl,
here
%=X (34b)

]

(b)

Fig. 5. (a) Irradiance pattern of the fundamental mode. (b)
Wavefront of the fundamental mode.



VEen b_\' Eq, (33). The :‘_\‘p'iiri' Xpre
ite polynomials in two variables is gives

1 Eq. (13).

The first exponential term in Eq. (34) corresponds 1
the geometrical optics phase shift. The second ex-
ponential term expresses the phase advance resulting

from diffraction. This phase term is of particular im-
portance when the helical gas lens is incorporated
resonator, beeause it determines the resonant fro-
quencies.  In optical waveguides. ko ige of this
phase term is also important beeause it = s us 1
compute the transformation of ical beams that are
not in a single mode. It should be noted thar the group
velocity is for all modes, acoprding to this exprs I
equal to the velocity of lighs.
sequence of Gaussian opiics

The third exponential
the most importan
beeause it def]
contour, corresponding to a field am e reduced
by ‘a factor e = 2.718. . . at some transverse plane,
is an ellipse whose major and minor semiaxes are, re-
spectively,

a general con-

is probably
int of ‘view
The beam

wy = [(kr/2) tanp(co=: sinzl] 7, (zp.axis) (35a)
and

cosy <+ sine)] ~E,  (maxis).  (35b)

It is interesting to note that the largest beam half-
width (i) is to be found in the direction of the focusing,
i.e., the z;, axis, an unexpected result.
irradiance pattern is shown in Fig. 5la).
(35a) can be alternatively written

ki = Sx(np?) ™ * cos?slcosy — siny)~L (36)

For comparison, let us consider a sequence of thin
quadrupole lenses rotated by 90° every half-period,
having the same optical thickness per section as the
helical gas lens [ie, [ = £2/y9p, see Fig. 4(b)]. The
maximum beam radius w; in this system is casily found
to be

Enhuwst = SGp?) =1L + 2p2/8)/(1 — 2p2/8)]% (37)

The variations of knlun? and kylus® are shown in
Iig. 6 as functions of g*p. This figure shows that
the minimum beam sizes wy are roughly the same in
both cases, though they oceur for different periods.

If we assume that the radius of the helices is p =
2ug (a value large enough to ensure negligible inter-
ference with the optical beam), a relation is obtained
between the total differenee in refractive index An at
adjacent helices and p /A that reads

An ~20(p/N)"% (38)

For most liquids (dn/dT ~ 5 X 10-4/°C) and p/A
= 100, this difference in refractive index corresponds
to a total temperature difference of about 4°C. In
the case of carbon dioxide at a pressure of 10 atmo-
spheres the temperature difference required is about
50°C. The main advantage of confining optical beams
by lincar refractive index gradients rather than by
total reflection, as in eladded fibers, is that group dis-
persion is eliminated to a large extent.

Let us now consider the higher order modes of prop-
agation. We first note that the irradiance patterns
($®) are symmetrical with respect to the a and a.
axes.  The same is not true, however, for the wave-
fronts.  In the limit where » — 0 the diagonal terms
of Wy vanish. Thus, the triple sum in Eq. (13) re-
duces to a single sum over . It is not difficult to
show that, in that case, the field of higher order modes
is represented by Laguerre-Gauss funetions [with an
exp(ily) azimuthal dependence]. The irradiance pat-
terns therefore exhibit a circular syvmmetry for small
values of ». Irradiance patterns were caleulated from
Eq. (34) for various values of », m They are
shown in Fig. 7 for vy = me: = 1;m = 2, ms = 3;
ny = 10, ms = l.and my = m: = 6. In each case three
values of I 40° —have been considered.

As » inereases the b at first deereases in size and
later becomes el 1 along the x; (focusing) axis.
Wy
201 Wy
o
sz
_pm..
-
1 1 L 1 L
(o] ] 2 3 4 5 6
nl/2p
Fig. 6. Comparison between the maximum beam radius in the

helieal gas lens (wy) and in a sequence of thin quadrupole lenses
{ws), in reduced coordinates, as a function of the period p. 4 is
proportional to the temperature of the helices and k = 2=/A.
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Fig. 7. Mode irradiance patterns in helical gas lenses for various mode numbers and » = 5°, » = 30°, v = 40°. The coordinates are
(kr)%z;,0.

These irradiance patterns do not resemble the mode
patterns observed in the separable case (see, for in-
stance, IFig. 7 of Ref. 18).  The behavior of modes with
large mode numbers can, in principle, be deseribed on
the basis of Keller’s asymptotic theory'?; this asympto-
tic theory, however, will not be discussed here.

The main practical difficulty in using helical gas
lenses for the guidance of optical beams over long dis-
tances is that the beam is eventually intercepted by the
walls of the guide if the system suffers from random
bends,  As is well known, the axes of optieal beams
propagating in misaligned systems follow classical ray

2520 APPLIED OPTICS / Vol. 11, No. 11 / November 1972

trajectories, provided the approximation of Gauss is
applicable.? The effect of known misalignments is
therefore not difficult to evaluate; this evaluation,
however, lies outside the scope of this paper.

The author expresses his thanks to J. B. Keller for
clarifying discussions. Numerical calculation of the
mode irradiance patterns was made by W. Mammel.

This paper is the text of a talk given at the New York
University Seminar on Applied Mathematices, 1 October
1971.
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