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I inewidth of Laser Diodes with Nonuniform Phase-

Amplitude a-Factor

JACQUES ARNAUD,

Abstract—The linewidth of a laser diode having a phase-amplitude
fuclor & that varies arbitrarily along the path is calculated. For sim-
plicity, an ideal single-mode ring-type laser diode with only one wave
cireulating is considered. The theory is exact in the limit of large in-
jected currents, provided parameters such as the earrier temperature
do not vary and the gain or loss per wavelength is small. It is found
that when the electron-hole pairs are injected independently of each
other (that is, when the pump Auctuations are spatially uncorrelated
shot noises) the linewidth is half the value obteined earlicr for the lin-
ear regime multiplied by (1 + a?),, where the round-trip averaging
is affected with respeet to the reciprocal of the power pain, Specific
examples, in particular a sequence of amplifiers and pavtially reflecting
mirrors, are considered.

I

LASER diode consists of a piece of active material
of length L located between two reflectors ef power
reflectivity R. When the power gain per pass equals 1 /R,
the device oscillates at a frequency »,, but the oscillation
is not strictly monochromatic, even for a single-mode os-
cillator. The field spectrum is usually Lorentzian, at lcast
near z;, with a full width at half-power points Ap [1]. The
purpose of this paper is to evaluate Ay in the saturated
regime, in which the injected current density is indepen-
dent of the laser dynamics and the carrier density fluc-
tuates as a function of time. When the carrier density in
the active material varies, the complex permittivity ¢ is
perturbed by de. The ‘‘phase-amplitude coupling factor”
@ = —Re (6e)/Im (8e) is on the order of 5 [2] if the
oscillation occurs near the maximum of the gain curve
(with respect to the sign of «, note that we are using an
exp (—i2wvt) convention). Lax showed in 1967 on the
basis of a simple circuit model [3] that the linewidth Ap
is enhanced by a factor (1 + «?) when the cavity con-
ductance is independent of frequency. Henry [4] first
pointed out the importance of this factor for index-guided
laser diodes.
In the theories presently available, the e-factor is as-
sumed to be the same everywhere along the laser length.

INTRODUCTION

As a matter of fact, the e-factor may vary because of

varying saturation conditions, varying injected current
density, or compositional changes (intentional or not) in
the active layer. Stepwise variations of & also occur in
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ring-type resonators consisting of any number of ampli-
fying laser diodes (antireflection-coated laser diodes) and
Faraday isolators introduced to help select one propagat-
ing wave. The linewidth formula for this particular con-
figuration, given at the end of this paper, could be verified
experimentally with existing technology.

Quite generally, we investigate whether longitudinal
changes of & may significiantly affect the linewidth. We
show that Lax’s (1 + %) factor must be replaced by (1
+ a®),, where “‘av'’ stands for an averaging taken along
the laser diode. For ring-type diodes with only one wave
circulating, the averaging is to be effected, not with re-
spect to the longitudinal z-coordinate ;tscll, but with re-
spect to the reciprocal of the power gain. For a conven-
tional laser diode with a folded optical axis, the averaging
is to be taken with respect to the injected current density.
If the spontaneous emission factor n # |, the linewidth
cnhancemenl factor is [ng, (1 + o )]m.. In this expres-
sion, ng, as well as @ may vary arbitrarily along the laser
length. Exactly the same result is applicable when any
number of active elements are connected in parallel, as
we recently reported [3].

The averaging procedures just quoted are valid only if
the electron-hole pairs are injected in the active material
independently of each other, in both space and time. In
other words, the injected current density is supposed o
exhibit spatially uncorrelated shot noise. The shot noise
fluctuations of the pump (i.e., of the injected current) are
usually deemed to have a negligible effect on the line-
width. This conclusion, however, does not hold when e
varies. Indeed, if shot noise is suppressed, e.g., by driv-
ing the active elements with electrons from a space-
charge-limited thermoionic tube, one should subtract from
the above expressions half the spatial variance of . A
concise presentation of these results has been given [6].

Let us now clarify the difference between the saturated
regime considered in this paper and the linear regime
treated earlier [7]. In the linear regime, the ficld intensity
fluctuations are not supposed to influcnce the carricr den-
sity significantly. The active medium optical paramecters
are thercfore time invariant. The a-factor is irrelevant,
and there are no relaxation oscillations since the carrier
di‘-!‘%ily iz a-constant. While for most lasers the lincar the-
ory is applicable only below threshold, inlaser diodes it
can also vecur above threshold if the diode is drivenby a
constant de voltege and the resistances of the confining
layers arc small. Indeed, the cnergy spacing between
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ARNAUD: LINEWIDTH OF LASER DIODES

quasi-Fermi levels, and thercfore the carrier density, is in
that case independent of both time and space.

In the lincar regime, the laser output is essentially am-
plified spontancous emission, and the optical power fluc-
(uates according to a Rayleigh (exponential) distribution.
The linewidth Av of the oscillating field is given by the
well-known Schawlow-Townes (ST) formula [1] when the
cavity has a high quality factor or is homogeneously filled.
The ST formula is not applicable to laser diodes, how-
ever, because gain and loss do not occur at the same lo-
cation in space and have large values. A correcting factor
that accounts for this effect was first given by Petermann
[8] in the linear theory of gain-guided lasers. Petermann’s
trunsverse K-factor and a longitudinal K-factor [9] follow
from the general three-dimensional formula given in [7],
which is also in agreement with Henry’s results [4].

The simple linear regime is generally not applicable. to
laser diodes because, in the first place, the diode is current
driven. The voltage across the active layer is not fixed by
the power supply, and the carrier dengity can therefore
react to counteract the perturbing effects of spontaneous

rission. In the second place, the voltage drop in the con-
wing layers is usually larger than or comparable to the

itage drop across the active layer. A plausible model,
Then, is that the injected current density J at any point z
along the laserlength is independeni of the laser dynam-
ics. This is the regime assumed in the present paper.

We consider ring-type diodes because the basic con-
cepts are most easily explained in that configuration [see
Fig. 1(a)]. These diodes, incidentally, have the practical
advantage (over conventional laser diodes with a folded
optical axis) of a reduced sensitivity to spurious external
reflections since the power eventually reflected back (e.g.,
from the fiber input) may be absorbed at the input end of
the oscillator [see Fig. 1(b)]. Fabrication techniques are
in progress [10]. The assumption is made that some non-
reciprocal materials along the path prevent counterclock-
wise waves from reaching the threshold of oscillation. ‘We
are therefore not concerned with the complex refractive
index grating that two counterpropagating waves would

~ate if the (ambipolar) carrier diffusion length L, were
“tomparable to or smaller than the guided wavelength. The
dlffw;ion length Lp, as well as the current spreading
lc,ngih is on the order of a few micrometers, and therefore
much smaller than the diode length L = 500 pm. It is
easy to show that if the current density J injected in a ring-
type diode with one wave circulating is z-independent, the
local gain varies linearly with a minimum-to-maximuim
talio equal to the mirror power reflectivity R [Fig. 1(b)].
From a dynamical point of view, each elementary length
of the diode (called dz in the mathematical treatment) pos-
sgsses independent noise sources, and the ficld fluctua-
tions are only partly correlated along the length. The laser
diode therefore must be considered a multiple-active-cle-
meit oscillator.

In the saturated regime, the relative power fluctuations
are small and have a negligible direct effect on the line-
width, which depends mostly on phase or frequency fluc-
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Fig. 1. (a) Schematic 0f  ring-tvpe luser, The z-coordinate alang the path
varies from 0to L, and an arbitrary dependence on z of the phase-am-
plitude coupling factor a is considered. y(z) is the power gain defined
from the origin, and [{z) 1s the power loss. Only the clockwise wave is
considered. (b) Ring-type laser incorporating a lossless amplifying me-
dium and a single partially reflecting mirror. (c) Ring-type laser incor-
porating two lossless amplifiers and two partially reflecting mirrors.

tuations. The fundamental noise sources (to be discussed
below) are white, Gaussian, and stationary. They result
in an instantaneous frequency deviation 6r(r) which is
also Gaussian and stationary by linearity, but not white.

In this paper, we evaluate the linewidth Av in the limit of
large injected currents, assuming that the average param-
eters (e.g., the carrier temperature) do not vary. In that
limit, the field spectrum in Lorentzian near »,. and the
linewidth Avis equal to o times the (single-sided) spectral
density of the év (1) process at zero baseband (or ‘“Fou-
rier’”) frequency. This is the low-deviation limit treated’
in great detail by Rowe [11, eq. (199) and Fig. 4-10(a).
Notice that Rowe uses double-sided spectral densities].

In a phase-shift keyed optical link, the important quan-
tity is the statistics of the phase jitter: ®(r + 7)) — ®(1)
where T is the time slot duration. These statistics cannot
be obtained from the linewidth Ap alone when the fre-
quency deviation spectrum is not white. We therefore ac-
knowledge that the linewidth Ap that we evaluate does not
fully characterize the laser diode noise properties. To
characterize the laser noise properties fully, one must
consider nonzero baseband frequencies, as was done in
[12] for a single active element. Detailed results for vari-
able a will be reported elsewhere.

In our opinion, the usual rate equations for photon and
carrier numbers are not appropriate to evaluate the line-
width of variable-a laser diodes.

Consider first a single active element with a K-factor
larger than unity. According to previous theories based
on rate cqualiom the linewidth would be proportional to
K(1 + a*). The correct expression fnr a thin- blab model
turns out to be, however, K(1 + o®)/(1 4 ak)’ where
K = 1 + k°. The latter cxpression was first given by Lax
[3] in 1967 in a different context and rediscovered by us
[13], specifically in conncction with thin-slab laser diodes.
Similar express=ns can be obtained for conventional gain-
guided lasers. One reason for the (quantitatively very im-
portant) discrepancy is that conventional theories require
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that @ be independent of the transverse coordinates, while
K # 1 values imply that transverse inhomogeneities are
present.

In the present paper, the transverse K-factor is assumed
to be unity. The conventional rate equations, however,

suffer from other, less conspicuous, deficiencies. One of

the rate equations describes the time evolution of the
niumber of photons in the cavity, that is, of the electro-
magnetic energy stored between the diode end facets di-
vided by the photon energy iiv. There exists, however; no
general expression for the stored energy in a medium with
gain or loss in terms of the complex permittivity and its
first derivative with respect to frequency. The expression
sometimes employed, proportional to d[r Re (¢)]/dv, is
ot accurately quoted from Landau and Lifshitz’s book
[14]. in which it is specified that the permittivity must be
real. A simple example (a laser cavity incorporating a
miatched transmission ling) clearly shows that the stored
cnergy may be increased arbitrarily without affecting the
laser operation. This ambiguity, noted by Henry [4] in
connection with internal losses, was too quickly dis-
tlissed.

" Because classical textbooks on laser diodes begin with
_instein’s relation between spontaneous (A) and stimu-

lated (B) emission coeflicients, which depend for their
definition on the concept of energy, one gets the feeling
that the concept of energy is indispensable. Einstein’s re-
lation, however, is unnecessary. Given the carrier density
(n, expressed is the number of electrons per cubic meter)
and temperature (T'), the solution of Schrodinger’s equa-
tion for a semiconductor (supplemented by the Fermi-
Dirac distribution) is capable of giving directly the (pos-
itive or negative) semiconductor conductivity ¢ at some
frequency ». Using Kane's k-p method [15] and some ap-
proximations (parabolic bands, k-conservation rule, etc. ),
one obtams for example, at 7 = 0 K a minimum value ¢
= —4 107 #'/* §/m. This result is derived from first
principles without any reference to the concept of energy
or spectral density [16]. (The negative conductivity o is
introduced in this paper in the form of a conductance per

__nit length G,.) The optical power Py, going into radia-
“tion modes can be evaluated from the Nqust -like current
sources associated with o(#) and Maxwell's equations.
To within the constant e/hv, this Py, power is the thresh-
old current if we leave aside nonradiative recombinations.
Therefore, the need to introduce the concept of energy in
laser diode theory nowhere arises, at least in the small-
sianal approximation.

The carrier rate equation as usually written is also am-
biguous. First, it is usually not specified that the current
tijected in the diode exhibits shot noise fluctuations.
These fluctuations, however, are not intrinsic to the laser,
hut depend on the driving ¢ireuit [17] and may or may not
exist.

Second, the diffusion coeflicients of the Langevin noise
term in the carrier rate equation given by various authors
differ by a factor of two when the electron-hole inversion
is complete and spontancous emission can be neglected
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(compare, e.g., [4] and [18]). Because in some of these
theories the photon shot noise is included in the amplitude
fluctuations, while in others it is not included, the mea-
surable amplitude fluctuations predicted at zero baseband
frequency end up being the same. However, other results,
and 1n particular the predicted linewidth of oscillators in-
corporating more than one active element, are not the
same in the two formulations.

Our theory differs canceptually from the conventional
rate equation theories. It is based on Nyquist-like noise
currents (not *"phaton events’™™) and on the law of con-
servation of particle rate. The conecept of photon nwmnber
or of energy is nowhere used. The usnal photon rate equa-
tion is replaced by an equation for the instantaneous com-
plex resonant frequency. At low baseband frequencies, it
suffices to specify that the oscillation frequency is real.
This does not imply that the field fluctuations vanish, but
only that they are bounded. Previous theories (e.g., [4],
[19]) have used also Nyquist-like noise currents as basic
noise sources. However, because the time-dependent par-
ticle rate conservation law (in which one must include the
Nyquist currents) is not written down in these theories,
only partially valid results were obtained. Our semiclas-
sical theory agrees exactly with the predictions of quan-
tum mechanics as established by Yamamoto and others
[17], even in the case of external electronic feedback, for
both the amplitude and phase fluctuations. Yamamoto [17]
considerably improved our understanding of laser fluctua-
tions by being careful in distinguishing between the in-
ternal field (on which most previous quantum theories had
focused, but which cannot easily be measured and is
therefore of little interest) and the external field, which is
the quantity of interest. Instead of “‘internal field’’ and
“*external field,”” we find it preferable to speak of the “*in-
ternal energy’” and of the (well-defined and measur-
able) dissipated power, respectively, because the gener-
ated power is not necessarily dissipated externally. In our
basic theory, we do not distinguish between power dissi-
pated or scattered away, internally or externally. A sep-
arate calculation is needed to evaluate that part of the total
dissipated (or scattered) power which we chose to con-
sider “‘useful.”’

The basic concepts relating to noise sources arc pre-
sented in Section II. Readers not interested in the mathe-
matical details may go directly from there to Section VI,
where the basic formula is given together with the re-
quired notation and a number of practical examples are
worked out. The laser diode linewidth is expressed in
terms of a simple inlegral along the path for any variations
of the phase-amplitude coupling factor «(z), the gain
y(2), the loss I(z), and the injected bias current density
J(z). This formula is exact under the assumptions stated
above. To our knowledge, the general result in (42) is
new, and we are unaware of valid alternative procedures
that would lead to it. The case where the spontaneous
emission factor 1. (2) is not unity and the case where shot
noise is suppressed are treated in Sections VII and VIII,
respectively. In Section IX, we show that for a conven-
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tional laser diode the «-averaging may be effected with
respect to the injected bias current density, but additional
approximations are required.

Let us now consider the intermediate steps. The model
for the ring-type optical cavity is a transmission line of
characteristic impedance Z,, closed on itself; see Section

ITT and the Appendix. This transmission line is loaded by -

a conductance G, split into a passive conductance G, and
an active conductance G,. The change of the complex os-
cillating frequency of the diode due to any small change
of G (perturbation formula) is evaluated in Section IV.
The carrier rate equation is written down in a simplified
form in Section V. We specify that the rate of injected
electron-hole pairs equals the photon generation rate. This
assumption holds when the driving current is much higher
than the threshold current and when the quantum effi-
ciency is close to unity.

The modulation properties of the laser follow from the
general formulas established in Section V. Frequency
modulation can be obtained from slow injected current
changes only when « varies along the diode length and at

___sast two electrodes are used, as other authors have
~ointed out [20], if we do not consider thermal effects.

“~hese modulation properties, however, will not be dis-

cussed in detail.

II. Basic Noise SOURCES

The resonant frequency of a cavity is perturbed by the
fluctuations that are associated with any dissipative or ac-
tive element that it contains (fluctuation-dissipation theo-
rem). Specifically, one associates with any (positive or
negative) conductance G a white Gaussian fluctuating
current i (1) whaose (one-sided) spectral density is [19]

S, = 2hv| G| (1)

where the vertical bars mean ‘‘absolute value.”” For the
narrow-band processes of interest to us, it is convenient
to express i(t) in the form of a slowly varying complex
current [(t) = ¢(t) + is(t). The spectral densities of
these ¢ and s processes are

— S, =8 =4m|Gl; S.=0. (2)

“— If G represents a passive (time-independent) positive

conductance, the perturbation is just that due to the fluc-
tuating cwrrent whose spectral properties arc defined in
(2). However, if G is negative and represents stimulated
cmission, the circuit is perturbed not only by the fluc-
tuating current in (2), but also by the reaction of the me-
dium, that is, by the (generally complex) changes of 'G
due to carrier density Aluctuations. This is why the carrier
rate equation must be considered even at vanishingly small
baseband frequencies.

In order to exhibit more clearly the essential features,
an ideal laser is considered in which spontaneous recom-
bination in modes other than the oscillating mode is neg-
ligible compared to stimulated recombination. Further-
more, the quantum efficiency is supposed to be unity, and
the electron-hole population inversion is assumed to be
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complete, Then the instantancous rate of electron-hole
pair generation equals the rate of photon generation in the
mode. It is further assumed that the injected current den-
sity J exhibits shot noise; that is, the electron-hole ‘pair
arrival times are independent of each other. The hole ar-
rival times are fully correlated with the electron arrival
times through space-charge fields. This assumption, com-
monly made in semiconductor noise theory, holds at least
at the small baseband frequencies considered. Thus, the
spectral density of the injected current fluctuation j is
taken to be
S = 2e|J| (3)
where —e denotes the electronic charge. Notice the sim-
ilarity of S; and §;.
The fiuctuations relating to two distinct points in space
are uncorrelated. Thus, if G (z) represents a conductance

per unit length in the transmission line model and J(z) is
the injected current per unit length,

S = 2| G(2) | 8(z - 2) (4)
Sy =2e|J(z) | 8(z = 2') (5)

where i = i(z), i' = i(z'),j = j(2),j' = j(z'), and
&( - ) is Dirac é-function.

-

[1I. THE TRANSMISSION LINE FORMALISM

A ring-type laser can be modeled approximately as a
transmission line with distributed gain and loss, closed on
itself. Provided that the gain or loss per wavelength is
small, as is usually the case, the complex propagation
constant k (z) can be written as (see the Appendix)

k(z) = ko(z, v) + iZ(2) G(z)/2 (6)

where k,(z, v) is real and G (z) denotes the conductance
per unit length of the transmission line. The characteristic
impedance Z_ of the transmission line is not affected sig-
nificantly by G and can therefore be considered real.
Only waves propagating in the positive z-direction are
considered. Some nonreciprocal effects are implied that
prevent counterpropagating waves from reaching the
threshold of oscillation. According to classical transmis-
sion line theory, the voltage V(z) is (see the Appendix)

V(z) = V(0) exp [:z' g k(z, ») {;3] (7)
(8]
and the resonance condition V(L) = F(0) is, using (6),

1L
{ k,(z, ») dz = 2qm:
Wil
8
gﬂ Z(z) G(z)dz =0 (8)

where ¢ denotes the longitudinal mode number.
The power §(z) propagating along the path at z is

S(z) = | V(z) [ /22.(2), (9)
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and it evolves with z according to

S(z) = S, exp l—- Su Z.(2) G(z) dz,]:
S, = §(0) (10a)
S Yasjdz = -2.G. (10b)

Using (9) and (10), we verify that there is no net power
gained or lost along the path

Il

L L j
S( 16 (z2) | v(z) | @ SU (ZG)(| V[ /22.) dz

3 &

]

S(0) = S(L) = 0. (11)

Let us now split G (z) inte G, (2) — G;(z) where G,(z)
represents the passive part, while the active part G,(z)
expresses stimulated emission. Because the electron-hole
population inversion is assumed to be complete in the rel-
evant range of energies, no stimulated absorption process
takes place. Since no carrier-dependent loss mechanism
is present, G, can be considered a constant. The stimu-
lated process which brings electrons from the split-off
band to the top of the heavy-hole valence band is not con-
sidered here. It occurs only when the spin-orbit splitting
energy is comparable to the bandgap energy.

Let us define a loss factor I(z) and a gain factor v(z)

by
I(z) = exp[ 5{: Z.G,(2) dz:|;
difdz = Z.G,l (12a)
and
v(z) = exp [L Z.G,(z) dz];

dy/dz = Z.G,y (12b)
respectively. Note that
1(0) =4(0)=1; HL)=~(L)= 0. (13)
With the above notatien, (10) reads
5(z) = Syv(2)/H(z)- (14)
Using (12b); (9), (14), and the fact that v = [ at both

ends of the integration interval, the total generated power

can be written as
all

J, 6. | v [

Il

Py

0 a
=8, E| dyfl{y) =5, SI dl v /1* (15)

where we found it convenient Lo use 7 in place of z as an
independent variable and we consider the loss “*1'" as a
function of y. Note that  and / are nondecreasing func-
tions of z. Therefore, [ is a nondecreasing function of vy,
and conversely.
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In the next section, the effeet of a small complex change
of G on the complex resonance frequency is considered.

IV, THE PERTURBATION FORMULA
If the active medium is perturbed, G (z) being incre-
mented by some small complex admittance per unit length
yp(z) = gr(2) + iby(2). the real part of the second re-
lation in (8) must remain equal to zero. We therefore have

‘L‘ Z(z) gr(z) dz = 0. (16)

As presently established, this relation holds only for per-
turbations yy (z) that vary slowly with z. Consider, how-
ever, a simall current source / at some z-location. It splits
into two currents: -+7/2 in the forward direction and
—1I/2 in the backward direction. The +7/2 current gen-
erates a forward-propagating voltage wave 8V = Z_.I/2.
Therefore, the complex phase shift introduced by the small
current / is equal to iZ.y;/2 where y; = —I/V. The
imaginary part of this expression, upon integration, gives
again (16). This alternative derivation shows that (16) can
be employed for perturbations that are uncorrelated along
the z-axis and therefore do not vary slowly.

Expanding now k,(z, ») to first order in », the fre-
quency deviation 6 is obtained from the imaginary part
of the first relation in (8) in the form

2néy = (2'r_)~I Sa Z.br(z) dz (17)

where 7 denotes the round-trip time, that is, the integral
of dk,/d(2mv) over the round-trip length L. Equations
(16) and (17) can be obtained alternatively from the gen-
eral perturbation formula [7], which involves the adjoint
or counterpropagating voltage. But in the present case, a
direct approach is physically more appealing. The time
dependence of the perturbations need not be shown ex-
plicitly at the moment because only the adiabatic or slowly
varying regime is considered.

The perturbing admittance yy is the sum of three terms:
1) The first term is the fluctuating curient i, = ¢, + is,
associated with the active conductance G,, divided by the
voltage V. 2) The second term is the fluctuating current #,
= ¢, + I5, associated with the passive conductance G,,
divided by the voltage V. We find it convenient to replace
V'by | V| in these expressions. This is permissible for
white processes. 3) The third term is the change g(1 —
i) of the medium admittance where o = —b/g denotes
the phase-amplitude coupling factor. « is usually positive *
and may vary along the laser length. Thus,

e = (e + )/] V] + (6, + 15)/1V] + 8(1 — i
(18)

Separating the real and imaginary parts in (18), we have
gr=(cs + )/ V| + &
by = (s, +8,)/| V| — ag. (19)
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Using (19), (17) ean be written in the form
L

=
2x6y = (27) L Z (0 + ey + 5,)/| V| + ag,] de

(20a)
whc:n:*. 8u = —c,/| V| = g represents the total change of
G, Equation (20a) is conveniently written as an integral
over the gain factor ¢ using (12b):

V]

2ady = (27*}—'I E dy
1

(s F ey +5,) /G| V| + agu/G,].
(20b)
To evaluate g, we need the relative fluctuation p(z) of
the propagating power S{z) defined in (9):

p(z) = 88(z)/S8(z). (21)

If we take the logarithmic variation of (10), we obtain

=

~p(z) = p(0) - SD Zegrdz  dpfdz = —Z.gr (22)

o
wt}crc &rdenotes, as before, the total conductance change.
Wl‘th the help of (12b), the second expression in (22) is
written as

ydp/dy = —g1/G, (23)

or, using the first relation in (19) and the definition of 2,
following (20a),

vdp/dy = g/ G, — 6,/ G,| V|. (24)
The remaining step to obtain g, requires that the carricr
rate equation be written down.

V. TuE CARrIiER RATE EQuaTIiON

It is assumed that the rate of injected electron-hole pairs
equals the rate of photon generation in the oscillating
mode at any time. We therefore have, equating the gen-

\_fation rates,

I /e = G,(2) | V()| J2hv. (25)

If we increment J(2) by j(z), we have from (25), since
8 denotes the variation of G,

JI'=2,/6; + p. (26)
According to (24) and (26), the relative voltage inten-
sity fluctuation p obeys the differential equation
d(ve)/dy = j/T = /G| V| =,  (27)
whose solution, in order that p(Q) = p(1), is

¥ 2
1o(y) = L Judy + (2 = 1) SI Jody. (28)

_ Letus summarize what has been achieved so far. Equa-
tion (_‘.ZOb) gives the frequency deviation §v. Into that
cquation enters g,, which is expressed in terms of p and j
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in (26), and p itself is expressed in terms of j and ¢, in
(27) and (28). We have therefore achieved our aim .of’ex~
pressing 6 as a sum of the five uncorrelated processes:
Cus Sas €5y 5p, and j. In the present extended structure
model, these currents are functions of z, and the sum ac-
Fually involves integrals over z (or v). When an integral
is performed over -y instead of z, we must use the follow-
ing transformation of the Dirac é-function:

0(z) = (dy/dz) 6(v). (29)

The usual absolute value in this transformation is unnec-
essary since dvy /dz = 0.

Let us recall now that if é» = ax + by + - - - is the
weighted sum of independent processes x(¢), y(r), - - -
of spectral densities S,, S, - - - , respectively, the spec-
tral density of é6» is

Sp=lals + |68+ . (30)

We are therefore in position to evaluate s;,.
Because the algebra is involved, it is convenient to de-
fine the normalized processes

p = (S,/2m) "¢, /G| V|;

Sy = v difdy oy = ¥') (31a)
a = (S,/2w) e, /G, | V;

Seat = (7)) (v —7") (31b)
m = (5,/2m)"7/J,

S =) 8y =) (31c)

Relations similar to (31a) and (31b) can be applied to s,
-and s,. The expressions for the spectral densities in (31)-
follow from the basic equations (4) and (2), (12), and the
transformation rules in (29) and (30).

Let us consider first the first parenthesis in the integrand
of (20b). For that term, we have

L]
Spit= (4w7)_l El dy T-l("‘u i @ty T 5!')/(?“’ V‘

(32)

and thercfore, using the mathematical results in (30), (31a)
and (31h),

{
Sith = (4?{‘7’)-2 (2he /S,;) g dry
Ji

[+ &) i) + ydifdy] /v (38)

The second term in (20b) can be written in terms of the
normalized processes as

@ = (dar) " @r/5)" |y (/) f(1) ()

DT b e S il 2 e A g e D BB
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where
>

fiy)=m-— y! “1 dy, (m — p)

w

i Q
—y (@ =1)" S. dyy (m — p) (34b)

and we have used (26), (27), and (31). Using again the
mathematical result in (30), we obtain

! il
Sy, = (4"""}_2 (2hv/S,) 3 &y gl i
| .

< (aa’ [yy") Sy (35)

Let us evaluate Sy, Notice that f(7y) in (34b) consists

of two terms linear in p and three terms linear in m. Con-

sider first the terms in p. They lead to 2 X 2 = 4 terms
for Sz, namely,

min(y,y")
Sg= (‘YT')_I [ S; dy y(dl/dy)
+@-1" S: dy y(dl/dy)
s@-0" | ayasan

2,
+@-1" Sl dy T(df/d'r)]- (36)

Consider next the terms linear in m. There are three

such terms that we label: 1, 2, and 3, leading to nine terms
in the solution. The terms 22", 23", 327, and 33’ are iden-
tical to the ones obtained above except that the integrand
is */"" instead of “‘y(dl/dy).”” When these terms are
added to those in (36), the integrals can be evaluated in
closed form since

y(difdy) + | = d(ly)/dv, (37)

and we obtain, after rearranging;
(@1 + o) /vy (Q = 1) (38a)
(Qyi + 4T ) /yy/ (@ —1) ify <y (38b)

The terms 12, 137, 21’, and 31' exactly cancel out the
terms in (38). The only remaining term is therefore 117,
and we have

ify >«

Spo=1(y)8(y = 7') (39)
Substituting the result in (39) into (35), we obtain

£4 ]

Sz = [4'&";‘)_2 (2kr/S,) ) dy &l y)/y*. (40)
|

Adding now the results in (33) and (40) and rearrang-
ing, we obtain

85 = Siun + Sgacay
]

(47rr)_2 (4hv /S,) SI dv(1 + o*) I/v* (41)
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where we have used the fact that dy (ydl/dy — 1) /v* =
d(l/vy) gives a zero contribution since 1/~ assumes the
same value, namely unity, at both ends of the integration
interval.

The spectral density of the instantancous frequency de-
viation v is expressed in (41) as an integral over a round
trip in the ring-type diode. The two functions e ( y) and
[(7y) enter, but the injected current density J does not
enter explicitly. As is well known [11], the laser line-
width Av is equal to 7 times the spectral density S;, of the
frequency deviation process. The resulting expression for
Av is expressed in a practical form and applied to specific
examples in the next section.

VI. THE LINEWIDTH FORMULA

If we introduce the total generated or dissipated power
P given in (15), the laser (full width at half power) line-
width Ay is given by

A = 2xAvPr/hv

Il

0 L]
@)y Sl dv/l1 51 dy(1 + &) 1/y* (42)

where hv denotes the photon energy, and 7 = L /v, is the
round-trip time where L is the round-trip length and v, is
the group velocity. If v is a function of z, 7 is given by
a simple integral.

On the right-hand side of (42) enters the product of two
integrals over a round trip in the resonator. y(z) = 1
denotes the power gain defined from the origin of the
z-coordinates, with y(0) = 1. /(z) = | is the power loss
similarly defined, with [(0) = 1. After a round trip, y (L)
= J(L) = {1 since the total power gain equals the total
power loss in the absence of perturbations. y(z) and /(z)
are nondecreasing functions of z, and therefore, [ is a non-
decreasing function of . On the right-hand side of (42),
the phase-amplitude coupling factor «, as well as [, is
considered a function of 4. The laser linewidth is there-
fore easily evaluated from a simple integration if one
knows the three functions y(z), [(z), and c«(z), which
can be reexpressed as two functions, /(%) and c( v), by
eliminating z. The expression in (42) is independent of
the choice of origin, even though this is not obvious by
inspection. _

For a = 0, (42) gives half the result applicable to the
linear regime. Notice that the second integral in (42) can
then be derived from the first one by changing [ to 1/{
and y to 1 /v, as well as the sign, as is appropriate for-
adjoint (counterpropagating) fields [7]. The result in (42)
for any «(z) function is hall the result applicable to the
linear regime multiplied by (1 + @) 4 Where the aver-
age is taken, not with respect to the z-coordinate itself,
but with respect to Id(1/y). Let us emphasize that this
simple result holds only when the injected bias current
densities exhibit spatially uncorrelated shot noise. Oth-
erwise, we would end up with numerous complicated in-
tegrals that could not be solved in closed form. The result
in (42) applics in the limit of large injected currents when
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the rite of electron-hole pair generation equals the rate of
photen generation in the oscillating mode, and the pairs’
arrival times are independent of each other in both space
and time.

Let us apply (42) to a number of interesting special
cases. Consider first the case where the loss equals the
gain everywlhiere along the path: [ = -+, and « is a con-
stant, A straightforward intcgration gives

A=7r2(me) (1 +a?)/2 (43)

This is the standard ST formula [1] multiplied by the
phase-amplitude coupling term (1 + «”)/2. This result
is also applicable to the case where the generated power,
instead of being dissipated along the ring, is continuously
adiated away, perhaps because of curvature loss.

The case where the ring laser is lossless except for a
loss localized near the origin of the z-axis is of greater
practical interest. It is immaterial from the point of view
of laser operation whether the power is actually dissipated
on the path or radiated away through a partially reflecting
r~‘rror of power reflectivity R = 1/Q and eventually dis-
s.pated in some detector or at infinity. The configuration

‘olving a reflecting mirror is shown in Fig. 1(b). The
expression in (42) is, in that case,

A=77[(1= RY/R][(1 +a®),, /2]  (44)

where

(¢3), =(1=R)" SR o*d(1/y).  (45)

In other words, in a ring-type laser which is lossless ex-
cept for the coupling loss, the average of «® should be
taken with respect to the gain reciprocal 1 /4.

To give a specific example, let us consider the plausible
law & = 6 /v, implying that & varies from 6 to 6R. We
obtain from (44) and (45)

2uAvPrfhe = (1 — R) [1 +12(1 + R + RY)]/2R.
(46)

As we discussed in the introduction, the a-factor may

—Aury either because of changes in material composition

along the path or, for homogeneous layers, because of
chianging saturation conditions. The laiter effect is more
important for ring-type diodes than for conventional
diodes. In ring-type divdes, the ratio of maximum to min-
imum local gain is as large as 1 /R = 3 if R = 0.33, for
example. Just aqfrer the partially reflecting mirror, the lo-
cal gain is the largest because the field intensity is the
weakest. The a-factor is large at that location ( perhaps o
= 6) because we are on the “‘red’” side of the gain versus
frequency curve, according to the Kramers—-Kronig rela-
tions. The opposite is true just before the partially reflect-
ing mirror, o assumes there a reduced value and may cven
be negative.

Let us consider a ring-type laser incorporating in
snecession along the path an amplifier of power gain G,

v O
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constant e-factor denoted by &, a partially reflecting mir-
ror of power reflectivity R, a second amplifier with pa-
rameters (G, and oo, and finally, a second partially reflect-
ing mirror of power reflectivity R,, as shown in Fig. 1(c).
Application of (42) gives, for the linewidth of that con-
figuration,

A=1"Hg/n + g/r) [(1 + af) g ‘
+ (1 + a3) g /2 (47a)
‘\/C_:}. = l/\f('_;k; 7 == \/}a

e
(47b)

The case of a single amplifier and a single mirror is given
by (47) with the terms labeled by “*27" deleted.
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VII. INCOMPLETE POPULATION INVERSION

The previous theory is applicable at low temperatures.
At elevated temperatures (e.g., room temperature), the
active medium exhibits not only stimulated emission, ex-
pressed by the negative conductance G,, but also stimu-
lated absorption, expressed by the positive conductance
G,. In that case, it suffices in the previous expressions to
replace G, by the net gain G, — G,. The spectral density
of the noise current associated with G, — G, is, however,
proportional to G, + G,. If we define as usual a sponta-
neous emission factor

N = Gﬂ/(Ga bl Gb) (48)

which is on the order of two at room temperaure, we find
that the linewidth enhancement factor is

Pre (i o] (49)

where the averaging is defined as before.

VIIT. INFLUENCE OF SHOT NOISE

Yamamoto and Machida [17] have shown both theoret-
ically and experimentally that the amplitude fluctuations
of a laser output can be reduced below shot noise, ideally
to zero, when the pump (injected current) fluctuations are
suppressed. They asserted that the laser linewidth remains
unaffected. While their conelusion would be correct if the
c-factor were a constant, it does not hold when @ varies.
In our formulation, suppressing shot noise amounts to
suppressing the term j in (27). All of the subsequent equa-
tions can be solved exactly, provided the laser suffers from
no internal loss. The resulting linewidih enhancement fac-
tor is obtained by subtracting from the term in (49) half
the spatial variance of a:

var (@) = (&?),, = (&) (50)

'This effect should be accessible to experiment.

IX. ConvENTIONAL LASER DIODES

The previous results have been derived for a ring-type
laser diode with only one wave propagating. In a conven-
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tional laser diode, forward- and backward-propagating
waves create a standing-wave pattern. If the- diffusion
length is much larger than the wavelength, it is plausible
that the previous results could be applicable. It would then
suffice to apply the formula in (42) to a round trip in the
resonator. In the absence of internal losses, the linewidth
enhancement factor is then found to be given again by
(49), but the averaging is accomplished from one end facet
to the other, with the injected current density as a weight-
ing factor. Note that this is exactly the result obtained
when any number of active elements are connected in par-
allel [5].

It is not obvious that the ring-type result is applicable
to conventional laser diodes because the noise sources are
correlated (in fact, identical) at two points that are distinct
along the round-trip path, but correspond to the same point
in physical space. Note, however, that the current density
injected into the laser diode at some z-location splits into
two parts: one supplies power to the forward wave, while
the other part supplies power to the backward wave. It is
well known in electronics that when a current is split into
two parts, the shot noise fluctuations of these two parts
are uncorrelated.

Consider next the Nyquist-like noise currents. They can
be expanded in a Fourier series over some interval of non-
zero length AL, with A << AL << L. Because these noise
sources are uncorrelated and approximately stationary
over AL, the Fourier coeflicient of order m is uncorrelated
with the Fourier coeflicient of order —m [11]. The term
of order m excites only the forward-propagating wave,
while the term of order —m excites only the backward-
propagating wave. It therefore appears that the noise
sources are effectively uncorrelated and that the ring-type
result is applicable to conventional laser diodes. The range
of validity of the approximations made in this section
needs to be clarified.

X. CoNCLUSION

A general theory for the linewidth of ring-type laser
diodes has been given that accounts for the basic noise
sources (1 /fnoise and thermal fluctuations have not been
considered ). It is shown that the shot noise contribution
is on the same order as the spontancous emission contri-
bution and is essential to obtain a simple result. The sim-
plification is related to the fact that only when the pump
(injected current) exhibits full shot noise does the output
ficld evolve toward a coherent state in the limit of large
cavity lengths [17].

The basic concepts and results in this paper appear to
be applicable to conventional laser dicdes, provided lon-
gitudinal hole burning is washed out by diffusion. Whether
this is actually the case at high output powers (involving
short diffusion lengths) remains open to question.

We have assumed in this paper that the series resistance
of the confining layers is large, so that the injected bias
current density is independent of the diode dynamics. The
opposite assumption of negligible series resistance has
been treated in earlier papers. But the real situation is
probably somewhere in between and remains to be treated.
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Finally, it should be noted that only one electromag-
netic mode has been considered. If the power in the side
modes remains small compared to that in the main mode,
the side modes can be treated in the linear approximation,
and their power is Rayleigh (exponentially) distributed.
The total side-mode power is therefore Rayleigh distrib-
uted. The current necded to generate the side-mode power
is subtracted from the constant injected current and has
the same effect on the main mode as a nonuniform mod-
ulating current density, if the modes are toe far apart in
frequency to interact through carrier modulation. We
therefore concur with Adams’s finding [21] that the cffect
of low-power side modes on the main-mode linewidth is
negligible when « is a constant. The effect may be sig-
nificant, however, if « is nonuniform, as we discussed in
this paper.

It is shown in [23], [24] that electronic feedback may
squeeze the amplitude fluctuations below shot noise. For
arbitrary multiple-active elements, the fluctuations can be
expressed simply in terms of the optical circuit scattering
matrix [25].

APPENDIX
THE TRANSMISSION LINE MODEL

The theory of propagation along nonuniform transmis-
sion lines can be found in electrical engineering text-
books. However, it is convenient to derive here the es-
sential formulas. We also briefly discuss the applicability
of this formalism to buried heterojunctions.

Consider first a periodic filter with series impedance Z
dz and parallel admittance Y dz. The term dz is introduced
for later convenience. Ohm’s law and Kirchhoff’s law read

;k+| == Ik == —de V;—+1 (Aib)
where kb = -+« , —1.0, 1, 2. - - - labels the cells. Vis

the voltage between the two conductors, and [ is the cur-
rent flowing in one conductor. The sign convention is eas-
ily understood from the above equations. In the limit
where dz is small (see, for example, [22, eq. 3)-(D)D).
these equations become

dV/d: = -ZI (A2a)
dl/d; = —YV. (A2b)

These differential equations admit the following solu-
tions:

V(z) (A3a)

V(0) exp l - S (}"Z)I'{1 dz

]

1(z) (}'/2)”2 V(0) exp [—*S (Ir’Z)]zz dz] (A3b)

where the integrals are from 0 to z. The z-variation of the
characteristic admittance (Y/Z)'/? is supposed to be
slow, so that its variation can be neglected in differen-
tiating the right-hand side of (A3b) with respect to z.
The transmission line formalism is applicable to an ac-
tive layer (with gain or loss) bounded by two perfect con-
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ductors, the electrical field being perpendicular to the
conductors, provided the ambipolar diffusion length is
much larger than the transverse dimensions (thickness and
width) of the active material. The layer parameters (c.g.,
thickness), however, may vary arbitrarily with the longi-
tudinal coordinate z as long as the changes per wavelength
are small.

For such an optical waveguide, the series impedance is
a pure reactance X, while the parallel admittance pos-
sesses a nonzero redl part G in addition to the susceptance
B. For a system with net loss, G is positive, while G is
negative for a system with net gain.

Z=iX, Y=G +iB. (A4)

We now define the propagation constant £ and the char-
acteristic impedance Z, according to

z.=(z/1)" = (x/B)"”
k=i(¥YZ)'? = & +i2,G/2;
k= (x8)""°

positive real (ASa)

positive real. (A3b)

‘rhie approximate forms in (AS) have been obtained under

- assumption that G << B; that is, the gain (or loss)

Bgr wavelength is small, but it may accumulate to large

values over the full laser length L >> \. In (A5b), ap-
propriate signs for the square roots have been selected.
Equation (A5) is the result in (6) of the main text, while
(A3a), together with (A35), is (7) of thé main text.

Because there are no good conductors at optical fre-
quencies and because epitaxy on metals is difficult, active
layers are, in the present technology, imbedded into
lower-index high-bandgap semiconductors [18]. The
transmission line formalism remains approximately appli-
cable to both TE and TM polarizations with minor mod-
ifications (introduction of confinement factors [18]), pro-
vided the wavefront of the guided mode remains
approximately perpendicular to the z-axis. Otherwise, Pe-
termann’s K-factor [8] must be introduced.
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