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The distribution of electrons in small one-dimensional systems Is obtained under the assumption of
evenly spaced energy levels. The method consists of considering isolated systems and shifting
electrons from their zero-temperature location. The distribution is then expressed in terms of the
number of partitions of integers. When the system is in thermal contact with an clecrtrical insulator,
the electron distribution is obtained by averaging the previous result with the Boltzmann factor as
a weight. Finally. when the system is in thermal and electrical contact with a large medium, the
Fermi-Dirac distribution emerges through averaging over the number N of electrons. The statistics
of light emitted or absorbed by the electron gas Is obtained without quantization of the optical field.
Our rigorous though elementary treatment helps clarify concepts employed in statistical mechanics.
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L. INTRODUCTION

When students are introduced o the field of semiconduc-
tor physics, they are provided as one of their basic tools with
the Fermi-Dirac (FD) statistics giving the probability p that
some energy level be occupied by an electron. Since the
number of electrons (in a single spin state) at some level can
only be 0 or 1. the average number of electrons, called *‘oc-
cupancy.” is equal to the probability p. In laser diodes. for
example. application of the FD distribution to the conduction
and valence bands of the semiconductor provides the total
number of stored electrons as a function of the electrical
voltage applied to the diode. Some integrals perhaps require
Intricate approximations. but no conceptual difficulty anses.

It is, on the other hand. not so easy to explain from first
principles the origin of the FD distribution unless the stu-
dents are willing to spend time studying books on statistical
mechanics. To be sure. the derivation of the FD distribution
given for example in Ref. 1 is formally simple, but the con-
cepts employed there do not apply to the small isolated Sys-
tems that one may encounter in modern electronics. The
principles of statistical mechanics are presented in many
books, e.g., Refs. 2-4. But most of them discuss the general
properties of large systems on the basis of concepts that are
difficult to comprehend in an intuitive manner. Many authors
recognize that fact and find it advisable. from a qpedagogical
stand-point. to first treat small isolated systems.”

The present discussion relating to one-dimensional elec-
tronic systems has apparently not been given earlier in book
form. Its goal is twofold. One is 10 provide exact expressions
for electron occupancies in small systems. The other is 0
clarify concepts employed in statistical mechanics. In par-
ticular, it is emphasized that the temperature of small iso-
lated systems is not a well-defined quantity. Accordingly. the
word *‘temperature’” will refer in this paper 1o the tempera-
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ture of mediz of arbitrarily large size that may be in contact
with the system considered. System temperatures are consid-
ered only in the so-called *‘thermodynamic’ limit. The state
of an isolated system is specified by the energy it contains.
The state of a system in contact with a large medium may be
specified by the average energy the system contains.

We first consider (possibly small) isolated systems. The
simplicity of the method relies on the assumption that the
energy levels are evenly spaced, with spacing e It is recalled
in Sec. II that this is the case for one-dimensional harmonic
oscillators. The assumption of evenly spaced levels may be a
good approximation for realistic electronic devices.

Section III treats noninteracting electrons with either O or
I electron allocated to the previously defined energy levels.
The total energy is least when only levels below some par-
ticular level are occupied. Starting from that least-energy
configuration. the total energy is incremented by re by sub-
mitting electrons to upward shifts summing up to the integer
7, as illustrated in Fig. | for r=6. Electron states were ob-
tained before in that manner in a very interesting paper by
Schonhammer and Meden,® whose purposes, however. differ
from ours. Exact analytical forms will be given for some of
their numerical data.

Let us now give a preview of the results. For our model,
the number W(r) of ways the energy can be incremented by
re is the number of partitions of r with. for example.
W(6)=11. The letter “*W"" is employed here because this
quantity is usually refered to as the “‘statistical weight™ of
the system. Each partition corresponds to an electronic con-
figuration called a ‘‘microstate.”* Because zll the microstates
are equally likely to occur, according to the basic postulate -
of statistical mechanics. electron occupancies are obtained by
dividing the number of electrons occupying some energy
level (listed in Table I for r=1-12) by Wi(r).
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Fig. 1.

Zero-lemperature 1 2yl The column r=0 c
temperature. The central part of the figure labeled =6 exhit ]
{microstates| of incrementing the energy by E=6¢. The | urnn
the number m, of electrons occupying some energy level. read o the cen-
tral part. The average number of electrons (V) is obtained by dividing m_
by Wi6i=11.

The analytic expression of the distribution in Eq. (6) forms
the basis of most subsequent calculations. When the system
considered is in contact with a heat bath (*‘canonical en-
semble™) the distribution is obtained by averaging the pre-
vious expression with the Boltzmann factor as a weight. This
leads to the series in Eq. (9). Sec. IV. Finally, it is shown in
Sec. V that when the system is in thermal and electrical
contact with a large medium (**grand canonical ensemble’)
the FD distribution is recovered by further averaging. As
indicated earlier and also recalled in Appendix A. the FD
distribution may be obtained in 2 much more direct and gen-
eral manner. Nevertheless. it is useful 10 outline the steps
involved for a simple model.

Electron distributions and heat capacities for canonical
and grand canonical ensembles at the same well-defined tem-
perature are found to be significantly different, unless the
system is large in a sense that will be made precise.

Electron distributions relating to isolated. canonical, and
grand canonical ensembles, are compared in Table 1I for the
case where the system (average) energy is equal to 6e. When
ris large (but not so large that the thermodynamic approxi-
mation is a valid one). even modern computers are unable to
directly obtain electron occupancies. Our exact expressions
are then required. Figure 2 shows that for (average) energies
as high as 6000e. 1solated-system distributions differ from
FD distributions. The acreement does not improve much by
selecting temperatures in the FD distribution different from
the one corresponding to the quoted energy.

One way of obtaining information zbout electron gases is
to look at the emitted light. This is our motivation for dis-
cussing in Sec. VI the statistics of light in optical cavities
containing electrons. It is proven in Appendix B thar the
Einstein prescription relating to emission and absorption by
an atom agrees exactly with the statistical mechanical result.

The geometrical dimensions are considersd constant
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throughout the paper and we are not interested in the pres-
sure exered by the electron gas on its boundaries. Thus sub-
scripts introduced in thermodynamics to indicate that the
volume is kept constant are omitted.

II. ONE-ELECTRON ENERGY LEVELS

The simplicity of the treatment given in the present paper
rests on the assumption of evenly spaced energy levels. As is
well known. this is the case for spinless particles forced to
move in one-dimensional quadratic potentials (guantized
harmonic oscillators). In the stationary state. the allowed en-
ergy levels are

€=(k+==)e. (1)

where £=0.1.... and € s the energy spacing he factor 1/2
1s suppressed Dy redefining the origin of the energy we have
sumply: €;=Kke. As a concrete example. consider electrons
submitted to a very large magnetic field directed along the x
axis and to an electrical potential V(x)=x. The magznetic
field forces the electrons to one-dimensional motion and. fur-
thermore, separates in energy electrons with spin 1/2 from
those having spin —1/2, so that the two spin states mav be
treated separately. The electrical potential ensures harmonic
motion. -

Modem electronics employs quantum wires of small cross
section (about 10 nmX 10 nm) and length L (see Ref. 7 for a
technical discussion). These wires are made up of small
band-gap semiconductors embedded into higher band-gap
media, so that the electrons get confined within the wire. If v
denotes the electron (group) velocity in the energy range of
interest. the spacing e between adjacent energy levels is
given by

hu R
-7 el
where / denotes the Planck constant. A typical value of the
energy spacing for L=1 umis e~1 meV. As pointed out in
Ref. 6, in many cases the smooth variation of 1 may be
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neglected. in which case e is approximately constant and our
model is applicable. The fact that in most practical cases two
spin states need to be considered may be handled as a rather
straightforward generalization of the present treatment. Thus
our model possesses some generality and may be applied to
realistic systems.

III. MANY ELECTRONS

In the present section we consider an isolated system con-
taining N electrons and total energy U. The electrons are
supposed to be in the same spin state and their mutual direct
interaction is neglected. Nevertheless. thev influence each
other because the Pauli principle forbids two electrons to be
in the same state.

The column in Fig. 1 labeled =0 represents electrons in
their lowest energy states: k=0.1.... N— 1, the higher-lying
states being empty, with N="7. For symmetry reasons 10 be
explained later the states are labeled by x=k—N=1/2 in-
stead of k. The system energy U is obtained by adding up
the energies of the N electrons. Since the energy spacing is €,

N(N=1)
-’¢=0—e*le—--'—t:\f—!}e=—T—e' (3)
In the case of Fig. | with N=7 we have U,=2le.

An important parameter is the energy E£=re (where r is an
integer) added to the system on top of the zero-temperature
energy Ug. This is realized by submitting electrons to up-
ward shifts that sum up to the given energy increment. It is
also required that the shifts be consistent with the Pauli ex-
clusion principle. That is. two electrons should not end up at
the same location. This condition is clearly fulfilled if the
electron shifts are nonincreasing. beginning with the electron
lying on top. Let us recall that electrons in the same spin
state are indistinguishable particles. Accordingly the ex-
change of two electrons would not result in a new configu-
ration.

Observe further that, provided the energy added 1o the
system is not too large (r<N), the lowest-lying electrons
remain undisturbed. The number of electrons then becomes
irrelevant. resulting in great simplification. If this is the case,
the electron gas is said to be nearly degenerate. (Note that the
word ‘“‘degeneracy’ here does not have the usual meaning
that two or more states have the same energy.)

Each electron configuration corresponding to some energy
increment E. or value of r. is called a microstate. The central
part of Fig. 1 exhibits the W(6)=11 ways of incrementing
the energy by E=6e€. Just looking at these microstates, the
number m; of electrons occupying some k level (for the
whole set of microstates) is readily obtained. These numbers.
listed on the right-hand side of Fig. 1, exhibit a symmetry
with respect to a value of & located one-half energy step
above the zero-temperature top electron energy. It is there-
fore advisable to label the states with a shifted value of k that
we denote k=k— /e where u=(N—1/2)e. The symmetry
relation then reads: m ,~m_ = W(r). Assuming that the mi-
crostates are equally likely. the occupancy (N} of level k is
obtained by dividing m, by the total number W(r) of mi-
crostates.

Some mathematical information concerning partitions is
now given. As indicated earlier. a partition of r is a set of
positive integers summing up to r. For example. 2.1.1 is a
partition of 4 since 2+1+1=4. The numbers 2.1.1 are
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Table I. Number m (r) of electrons at energy level k.

K I 3 3 4 5 6 7 8 9 10 11 i2
12.5 4] 1] 0 0 4] 0 0 i 0 0 0 0
1.5 0 ] 0 ¥ 0 0 0 L] 0 1] 0 |
05 0 0 0 0 0 0 0 0 0 0 1 1
a5 0 0 0 0 0 0 0 0 0 1 1 2
8.5 0 1] 4] V] 0 0 0 0 1 | 2 3
73 0 0 0 0 0 0 0 | i 2 3 5
6 4] 0 0 0 0 0 ] | 2 3 5 7
0 ] 0 0 0 1 1 2 3 5 7 11

0 0 0 0 1 1 2 3 5 710 14

] i 0 I | 2 3 5 6 10 13 19

) 0 ] 1 2 3 4 6 9 12 17 24

1.5 1 | 2 2 4 5 g 11 16 21 30
)3 i I 2 3 5 7 10 14 19 26 35
Wir 2 3 5 11 15 22 30 42 3 77

called “‘parts.”” Partitions of » up to 10 can be found in
standard textbooks.® but a program was needed to generate
partitions for larger values of r.

The number W(r) of partitions of r is available from
MATHEMATICA. We have: W(0)=1 and. by convention.
W(r)=0 if r<0. For most numerical calculations we found
the approximation

- exp(wy\2r/3)
Wir)= = 4)
drV3+3yr+2—(=-1Y

sufficiently accurate. The numerator of this expression alone

suffices in the thermodynamic limit because we consider in

that case only the logarithm S(r) of W{r). and extremely

large values of 7. The logarithm of the denominator

[=In(r)] of the expression in Eq. (4) is then negligible in

comparison with the logarithm of the numerator ( 77\ 2r/3).
The generating function of W(r) reads™’

> Wx'= I (1-xm-L (5)
r=0:1.... n=12..

Notice that one may go from one microstate to another
fcalled its conjugatel by exchanging electrons and holes
(empty states) and reversing the energy scale. The conjugate
pairs in Fig. 1, for example, are (1.11). (2.10). (3.9). (4.7).
(5.8) while (6) is self conjugate.

Table I lists the values of m , for r=1-12. Only positive
values of « need be considered because of the symmetry of
the distribution mentioned earlier. The occupancies (N, )
=m,/W(r) are given in the third column of Table 1I. The

Table 1. Electron accupancies for r=6.

K m, (N (N {(Nep
6.5 0 0 0.032 0.032
55 1 0.091 0.052 0.053
43 | 0.091 0.084 0.087
3.5 2 0.182 0.131 0.138
25 3 0273 0.202 0.213
1.5 4 0.362 0.300 0.313
0.5 5 0455 0.430 0.435
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sienificance of the last two columns of Table IT will be dis-

cussed later. -
The exact analvtical expression of m(r). x>0, reads

mry=— 2 (=1)W[r=i(c+il2)]. (6)

the summation terminating when the argument ‘o_f thev W
function (always an integer according to the definition of )
is negative. The mathematical proof of Eg. (6). 1hougr]t|]
simple in principle, is lengthy and will be given elsewhere.
For r==6. Eq. (6) reads explicitly

m, (6)=W(5.5—x)—W(4—-2k)—-Wil.5-3x). (7

=7 1

For example, mys(6)=W(35)—W(3)~ “.: 0)=71 =2 TI‘.
= 3. in agreement with the number shown in Fig. 1 and in the
tables. S m

From now on we take € as the energy unit for the sak
brevity. that is, we set e=1. In the tvpical case where ¢
=1 meV. this amounis 10 expressing energies in :r_}f\. a
common practice in the field of solid-state physics. With that
simplification we have E=r. We also set the Boltzmann
constant kg equal to unity. 3

When r is extremely large the entropy S{r)=ln[W{ir)]]
=~ 2r/3. Within that approximation. the temperature is
Tir)=dridS=~ \_5“.- and the electron contribution to the
heat capacity reads

d T
Cl=m=—T . (3)

.
dar
This result shows how quickly one may recover the we]_l:
known fact that in the thermodynamic limit the electronic
heat capacity is proportional to temperature. For mogt‘s.ys-
tems. however. € is not truly a constant and Eq. (8) fails at
high temperatures.

IV. CANONICAL ENSEMBLE

Suppose now that the electronic system is in :herr‘pal con-
tact with an electrical insulator such as dtar_nond. with tem-
perature reciprocal . The system energy £ _ﬂuc[uales. }t is
shown in Appendix A that electron occupancies are ol_)tame.d
in that situation by weighting the numbers m(7) given in
Eq. (6) by the Boltzmann factor exp(—pgr)=x', where we
have set x=¢ #. The canonical occupancy thus reads (for

k=0)

Zam )R it i) ©)
(N} =—0F——=— 2 e L
v Z,Wirx =13..
where the sums over r run from 0. 10 inﬁn_ity. 'Ijhe second
expression in Eq. (9) has been obtained by inserting the ex-
pression of m(r) given in Eq. (6). and remerpbenng that
W(r<0)=0. Remarkably. the result no longer m\-"olves the
partition of integers. For negative x:(\ ‘H.-: ;.._ (Nowdes
An expression for (V) denved ':1\‘ the melnqd of second
quantization was reported earlier in the .appendtx of Ref. 6.
This alternative expression. which involves three recurrent
infinite series. coincides with our expression in Eg. (9) tff
better than 16 decimal places. leaving little doubt rhat the
two expressions are identical. A formal proof. however. has
not been obtained.
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With the help of Eq. (5) the normalization factor in EQ.
(9). called the “‘statistical sum™ or “"partition fl:mcuon.
may be written (the letter “*Z"" is from the german **Zustand-
summe’’)

Z=E Wirx'= n (1=-x%"1. (10)

Since the probability that energy r occurs is proportional
o Wir)x". the average energy may be written

— = —— (11)
dx = dx

S rWirhr | dZ d In(Z)

o f L

" Z 1 Eq. (10). the average system

LUsing the expression ¢
energy reads

A g=

1 T . )
In(1—2 =y e (12)

Alternarively, the average energy may be calculated b} sum-
ming 2x{N,).. where (N ). is given in Eg. (9). from &
=0.5 to infinity. The resulting series scems to be different,
but it can be shown to coincide with the result in Eg. (12).
From Egq. (12) we calculate for example that (.r)=6. w_hen
B=0.4851... (or x=¢ #=0.6156...). The canonical distribu-
tion in Eq. (9) is compared to the (r=§) isolated syste‘m
distribution in Table II for the value of S just quoted. that is.
average energy equal to 6. o
forS?:Cc (r) is known explicitly as a function of £, it is casy
to calculate the canonical heat capacity C (usually deno.ted
Cy to emphasize that the volume is_ kept_ constant). Carrying
out the differentiation and rearranging gives

.

dir { nf2l |\~ }

_d(r) _ ' (13)
C(T)= ‘E!TT—*F;:__ sinhun‘ETiJ

At high temperatures (thermodynamic limit) the sum in
Eg. (12) may be replaced by an integral and we obtain

. n "o I
(ry=| dn r—=—T—=C(T)~T. (14)
r ‘Ilnl, T 6 3
Within our model the approximate relation in Eq. (14) bo}ds
when T exceeds approximately 10 (i.e., kgT> IQe). This re-
sult coincides with the one obtained before for isolated sys-
tems in the same limit.

V. GRAND CANONICAL ENSEMBLE

When the system is in thermal and electrical contact with
a large medium, such as a piece of copper. the number of
electrons in the system as well as the energy fluctuate. It 1s
shown in Appendix A that the grand canonical da;_x'tnlbguon
obtained by averaging the canonical distribution is indeed
the FD distribution. namely

I~ ! ;
PE<N!:)FD=EKp[ﬁ{k-_#)]_1 gAY

(15)

where the Fermi level x may be any real number. _
The average number (N) of elecirons. obtained by sum-
ming p over k from 0 to infinity. turms out 10 be equal M
<+ 1/2 when u2 | (as implied by our near-degeneracy condi-
tion). irrespective of the value of 8 F.rom now on \x'f: re-
quire, for the sake of comparison with 1solated systems and

N
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canonical distributions. that (A) be an integer, that is. we
assume that g = 1/2 is an integer. If the energy levels are
labeled as in previous sections by k=k—u. the FD distri-
bution reads

LT

p= = h=08051.5. . (16)

The average energy increment above the zero-temperature
energy is. using the symmetry of the distribution.

R
(Ne=2 2 wp= ¥ R BT (17)
A=0.500.50 a=13.. X o]
We find from this expression in Eq. (17) that the average

energy (rgp is equal to 6 when B=0.5254.. (or x
=0.5913...).

The FD distribution is shown in the last column in Table II
for an average energy equal to 6 energy units. We observe
that the canonical distribution differs appreciably from iso-
lated system and Fermi-Dirac distributions. The differences
between isolated and FD distnbutions are exemplified in Fig.
2, again for equal (average) energies. up 1o (»)=6000. Note
the important discrepancies in the tails of the distributions,
At electron occupancies of 10™*. for example, the discrep-
ancy exceeds 10% even when (E) is as large as 6000e.

Let the heat capacity Crp be defined as d{r)pp/dT. Using
the expression in Eq. (17) for the average energy, we obtain
after rearranging

[ nf4T -

Crof T)—Enz%““ | cosh(n/4T) R (18)
The canonical heat capacity C differs from Cgp at low tem-
peratures. For T=1 f(ie.. T=11K if e=] meV) for ex-
ample, we calculate that C=0.84Cgp,. The variations of C
and Cgp as functions of 7 were illustrated before in Fig. 3 of
Ref. 6.

VL. THERMAL LIGHT

One way of acquiring information about electron gases is
to observe the emitted light. In the present section we con-
sider a single-mode single-polarization optical cavity con-
taining an electron gas. The light energy statistics follows
from a concept implicit in the first (1900) Planck paper.
which asserts that matter (electrons in the present case) may
exchange energy with a wave at angular frequency w only by
units of %Aw. Because the theory is semiclassical the word
““photon,” which strictly speaking has significance only
when the light field is quantized. is avoided.

For our electron gas model with €= 1. resonant transitions
may occur only when fiw=g. where ¢ denotes some posi-
tive integer. Let an energy r* be introduced in the optical
cavity containing the nearly degenerate electron gas and ini-
tially no light. If the light energy is written as mhw=mgq.
where m is a non-negative integer. the electron gas energy is
"=r*¥—mg by conservation of energy. But. as we have seen,
the number of ways this energy r may be realized is equal 1o
the number W(r) of partitions of r. Since. according to sta-
tistical mechanics, states of isolated systems corresponding
to the same total energy are equally likely. the probability
P(m) of having light energy mq is

lelxl‘l«’{r*—-mq). (19)
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where the sign % denotes proportionality. The actual prob-
ability 1s obtained by dividing P(m) by its sum from m=0
tom=r¥/gq,

In order to measure P(m) and verify the analytical result
in Eq. (19). one should repeat a large number of times the
following procedure: First. introduce in the cavity the energy
r* and wait long enough for a steady-stale siluation 1o es-
tablish itself. Then quickls replace the electrons by a detec-
tor that absorbs and measures the light energy mgq left over in
the cavity. In that way the statistics of m is being built up.

It is more usual to place the cavity in contact with a heat
bath and perform measurements on the light steadily leaking
out of the cavity. But in that case the system energy r*
fluctuates with a probability law given by the Boltzmann
factor exp(—Br*). where B denotes the heat-bath reciprocal
temperature (see Appendix A). The light energy probability
then reads using Eq. (19) (the subscript "¢ is for *‘canoni-
cal™)

=expl — Bmyg E Wirjexpi— Br), (20)
r=i.l
where we have set again r=r*—imgq.
The above expression is normalized by dividing it by its
sum over m from 0 to * (infinite geometric series). We then
recover the usual expression for thermal light,'

P[.(m)={]—B_BQJC’_‘S”"" B=1kT. g=ho. (21)

Note that the above derivation relies only on the fact that
P(m) vanishes when the light energy my exceeds the total
available enerov. a condition always fulfilled. In other words.
the light leaking out of cavities is independent of the specific
features of the model adopted in the description of matter
(i.e.. presently. of the electron gas).

Equation (19) may be obtained by an alternative method
based on the Einstein concept of absorption and emission by
individual atoms. Appendix B shows that the two methods
agree with one another exactly (i.e., even for small systems).

VII. CONCLUSION

The assumption of equally spaced energy levels and near
degeneracy affords great simplification in the statistical me-
chanical treatment of electron gases. all the quantities of in-
terest being derived from the partitior. of integers. For small
energies, the picture in Fig. | already provides a wealth of
information. We find that the Fermi-Dirac distribution is not
always a good approximation for small systems such as those
employed in modern electronics. particularly at small occu-
pancies. The exact electron distributions that we have ob-
tained for isolated systems and for systems in thermal (but
not electrical) contact with a large medium, should therefore
prove useful.

When the system is in electrical and thermal contact with
a large medium, all physical quantities, such as electron oc-
cupancies and heat capacities. are accurately predicted by the
FD statistics even if the system is small. a well-known fact.
It is also well-known that in the thermodynamic limit all
three ensembles (isolated. canonical. and grand canonical)
are equivalent. For our model. heat capacities are propor-
tional to absolute temperature. This law fails at high tem-
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peratures when it is not permissible to approximate the den-
sity of state near the Fermi level by a constant.

We have shown that the statistics of light intensity in op-
tical cavities in equilibrium with the electron gas is given by
the number of partitions of integers. This was done both bv a
direct calculation and by applying the Einstein concepts of
aromic emission and absorption. The latter may be emploved
to generate sequences of emitted photons. thereby providing
information on the noise properties of light-emitting diodes.

Though somewhat academic. the evenly spaced level
mode! exhibits in a simple manner the virtues and limitations
of the laws of statistical mechanics.

APPENDIX A: CANONICAL AND GRAND
CANONICAL PROBABILITIES

Consider a possibly small system that may exchange heat
with a large medium and let the number of states W, of the
medium be written as exp[S,,(U,,)] where U,, denotes the
energy in the medium. The basic postulate of statistical me-
chanics is that the probability p(U) of a system state with
energy U is proportional to the number of medium states
consistent with that value of U. The system and medium are
supposed to interact weakly so that energies add up. Since
U<U,, where U, denotes the total energy
(medium—+system). a first-order expansion of 5_(L7_)
=S5,.(U,—U) gives

plU)=exp(—BU)., p=dS5./dU,,. (Al)

the derivative being evaluated at U,=U,. Remembering
that. for the model treated in the main text, U=Uj+r
where. according to Eq. (3). Uy=N(N—1)/2 is a constant
since N is a fixed integer, we have

plU)=expl—Br)=x", x=e B (A2)

The probability that some r value oceurs is the product of
the Boltzmann factor x” and the number W(r) of microstates
(the *‘statistical weight’" or ‘*degeneracy factor’™ of the en-
ergy level r). Since the isolated system distribution in Eq. (6)
(No)=m (r}/Wir) depends on r. the canonical occupancy
follows by averaging

ZNQW(r)x" Zm (r)x”

/ = = - o 3)
W ZW(r)x" IWirix" A3

where the sums run from r=0 to infinity. This is the expres-
sion employed in Eq. (9).

Consider next a (possibly small) system that may ex-
change electrons and heat with a large medium and let the
number of states W,, of the medium be written as
exp[S,(N,..U,.)] where N,, and U,, denote, respectively, the
number of electrons and energy in the medium. The prob-
ability p(N.U) of a system state is proportional to the num-
ber of medium states consistent with these values. Since N
<N, and U<U,. where N, and U, denote, respectively, the
total number of clectrons and  total  energy
(medium+system). a first-order expansion gives

pP(N.U)yxexplaN—BU), a=-—4dS_/iN,,.
B=ds, laU,,.

Consider now a level k of the system. with energy €,. Let
p denote the probability that it is empty (N=0=0) and p

(A4)
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the probability that it is occupied (N=1, U=¢€;). According
to the expression of p(N.U) in Eq. (A4) we have: p/p,
=expla— B¢,). Since p,+ p= 1, the probability that the level
k is occupied is

I =

= (AS)
expl fe, —al—1

This is the celebrated Fermi-Dirac distribution. For our
model with ;=4%. and seting = Bu. Eq. (A5) reads

I 1 I

T exp(Bk—Bu) F1 =1 x 1
Kk=k—u. (AB)

p

which is Eq. (16). In the nearly degenerate case the Fermi
level w is much larger than unity. We calculate from Egq.
(A6) that (N)= p+ 1/2. and that the variance of N is equal to
temperature 7" (in our reduced units). The distribution 1s sym-
metrical. as discussed in the main text, when g — 1/2 happens
1o be an integer.

Remembering that U=r+N(N—1)/2 according to Eq.
(3). the probability law in Eq. (A4) factorizes into the Bolt-
zmann factor considered before and a factor depending on N.
namely

,'V[,i\'r_l ) |]

-

PiN)xexp B| uN—

T IN=p—12)7 _
Fekpl =B ——————. (A7)

In going to the second expression a factor depending only on
the constant o and 3 parameters has been dropped. It follows
from the above expression of P(N) that {(N)=u+ 1/2 and
that the variance of N is equal 10 temperature T if x is large.
The canonical occupancy (N, ). in Eq. (9) depends on x
=k—N+1/2. In the present situation N is not a fixed integer
since it obevs the probability law in Eq. (A7). As N varies
from one integral value to another. the canonical distribution
gets shifted in energy up and down. The grand canonical
occupancy is thus obtained by averaging (Nj._y.in). for
some constant & value,
Ing E(Ni-—y-12)P(N)
(Np) = SP(N) ; (A8a)

where, according to Eqg. (9).

K ) K )
2N, Y= 1+ m)ﬂxH( 1=l =f(=x),
(A8b)
flk)=— (= 1)lglte=im, (A8¢)

i=1],

[

It can be shown'? that for u— = the expression in Eq. (A8)
coincides with the Fermi-Dirac distribution in Eq. (A6) for
any values of the parameters « and 3 (or w and T).

APPENDIX B
In 1917 Einstein made a fundamental proposal relating to
the behavior of atoms in optical cavities. For a single-mode

cavity resonating at angular frequency  and field energv
mh w. atoms in the lower state have a probability m(r)dr (to
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within a constant) of being promoted to the upper level dur-
ing the time interval 7 to r+dt. the energy acquired by the
atom being removed from the field. Atoms in the upper level
have a probability [m(¢)=1]dr of decaying to the lower
level, giving up their energy to the field.

For ¥, atoms in the lower level and N, atoms in the upper
level the transition probabilities thus read

Pim—m—1)=N,(m.t)m,

Pim—m+1)=N_(m.a)(m+1). (B1)
Obviously atomic populations depend on m. They may also
depend explicitly on time, for example. because of random
atomic motion. We assume that all the atomic states corre-
sponding to some m value are being explored. so to speak,
before the system jumps to some other m value. in which
case N,(m.r) and N,(m.r) may be averaged over their ex-
plicit time dependence and denoted simply as N,(m) and
N,;(m,‘r‘

Since the probabilities P(m—m=1) no longer depend
explicitly on time. Eq. (B1) describes a time-homogeneous
birth—death (Markov) process whose theory is well estab-
lished. The steadv-state probability P(m) obeys the detailed-
balancing condition

Pim)P(m—m—11=P(m—1)P(m—1—m). (B2)

This relation is obvious for m=1 because the probability is
zero for negative m values, and the general expression fol-
lows by recurrence. A more formal proof can be found. for
example. in Ref. 11.

If we introduce the expressions of the transition probabili-
ties in Eq. (B1) into Eq. (B2), the m factor drops out. and we
end up with

P(m)N/mj=P(m—1)N,(m—1). (B3)

Consider now specifically the electron gas treated in the
main text, with unity spacing between adjacent levels. and
set Aw=q. where ¢ denotes any positive integer.

Let n7(«.g:r) denote the number of microstates of energy
r having an electron at level k and none at level k+g. and
n!(x.q:r) the number of microstates of energy r having an
electron at level k+g and none at level x. We have

aT(k.q:ir)=nl(k.g.r+q). (B4)

Indeed, the promotion of an electron of a microstate of en-
ergy r from « to k+g¢ is a microstate of energy r+¢. This
microstate may be converted back to the original microstate
of energy r.

For simplicity. we now suppose that all k values are
equally likely (ignoring possible selection rules) and define
nT(q:r) and n|(g:r) as the sums of n7(x,q:r) and
nl(k.q:r), tespectively, over all x values. Values of
nT(qg:r) and n|(g:r) are illustrated in Table III (where the
dots represent electrons) for g=1 and r=0,1,2..... Notice
that the same values of n| and n7 occur. shifted by one r
unit and, incidentally, that nT(1:r)=n _(1:r)=W(r).

Considering the interaction of light with electrons sepa-
rated in energy by ¢. the averaged populatons defined earlier
read
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Table 1. Possible upward and downward electron shifts.

r= 0 1 2 3 4 i 6
T
Fermi level  ----- T L
nTilari I 2 4 7 12 19 30
nitlr) 0 | 2 4 7 12 19
o ntig:r) X nlig:r) BS)
=== N.(m)=s—7 B2
: Wirl % Wi(r) )

*

where r=r*—mqg. r¥ being the given total energy
(electrons—field). Inwoducing these definitions in the de-
tailed balancing condition in Eq. (B3) we obtain
nT(g.r*—mgq)
P(m) ____q__—q
Wir¥—mgq)
nllgq:r*—(m—1)q)

=P(m—1) . ! '
(m=1; W(r*=(m—=1)q) (60)

Because of the identity in Eq. (B4) (or rather its sum over &)
the numerators in Eq. (B6) cancel out, and we are left with

Pim) s Wir*—mgq)
P(m—1) W(r*—(m—1)q)

(B7)

This is a recurrence relation whose solution is easily seen to
coincide with Eq. (19). The Einstein method and statistical
mechanics also agree if some & states are forbidden. as is the
case for semiconductors.
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