CHAPTER 2

Periodic Structures

9.1 General Properties of Periodic Structures

by J. ARNAUD

I. Fundamental Consideration about Delay Litieg suosusssss FIRETRT TR |
II. Floquet’s Theorem . ...........---- e e L R B, e .19
111, Orthonormality Properties of the Modes ...........c.oooo-ovmeree 20
V. Equality of the Magnetic and Electric Energies Stored in a Cell ........ 22
V. Space Harmomics .......coiciieiemnanionien IR A e s 22
VI. Group Velocity and Energy Veloeiby o osmaimns s wam i Siomnege o 1 24
VII. The Reactance Theorem and Dispersion ..............oo.oo TR 25
VITI. Perturbations by a Current—General Cases ........coooeeermmrzrreneees 27
A. The Alternating Current of the Beam .........c..ooovooeommmmmne 27
B. The Current Layer Equivalent to Another Delay Structure ......... 27
C. Perturbation by a Dielectric . ... aiiiiaeiiee 28
D. Induced Current in a Real Conductive Layer ....................o 30

F. The Current Layer Equivalent to Plane Waves Propagating on Two
Parallel Biperiodic Structures ...........oooooimammiimin e 30
X, Babinet's PRREiple: 1y aiiiam e s e e gy St 31
D e i ] I ————— e A ¥
REFETOIEES v vov s on e eeineaambsssansaiaanes S— P

| Fundamental Considerations about Delay Lines

‘T'his section is concerned with the study of circuits used in injection
M-type tubes. It is possible to specify the general shape and the char-
Aeteristic quantities of such circuits; they are periodic in the direction of
propagation (of period p and of transverse width 0); in most tubes the
“ireuit struteure can be considered infinite. The most important character-
Wtic of a periodie structure as opposed to a smooth waveguide is its capacity
(0 propagate waves with a delay factor 7 greater than unity, = being the
intio of the light velocity to the phase veloeity of the wave. For tubes with
aulput powers varying from a few watts to a number of megawatts, 7
(koo vilues between 30 and 4. This is in fact the range of application of
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18 J. ARNAUD

the bar line theory which will permit the calculation of many complicated
structures.

In M-type tubes, a constant electric field is applied along the interaction
space between the line and a smooth plate in front of the line, called the
sole. This smooth plate can influence the propagation; however, the prod-
uct Ba of the propagation constant 8 of the wave and the line—sole distance
ais about 1.5 to 5, and it will be shown that this influence can be generally
neglected.

The second main parameter of a delay structure is its coupling impedance
which denotes the strength of the rf electric field above the line for a given
input power [?; it is defined by

EE*

B =5op

where £ is the useful field determined, for instance, at the level of the line,
and £* its conjugate value. R has the same dimension as a resistance and
is expressed in ohms.

It is obvious that two identical lines put in parallel, and considered as a
whole, have half the coupling impedance of each of them; therefore, the
modified coupling impedance given by

Rl
V /<0

where [ is the structure width and k, the free propagation constant, is a
convenient characterization of the structure field. It varies usually between
0.05 and 1.

The third important parameter is the variation of the phase velocity
2pn With the frequency. Let us suppose that the interaction mechanism is
such that a variation of r less than Ar does not modify the gain by more
than 3 db, then the bandwidth Af will be

of _ _ Arfr
I (ven/vg) — 1

vg being the group velocity of the electromagnetic wave. One can see that
in an amplifier it would be desirable for v, /v, = 1, in order to have a wide
bandwidth. In fact it is sometimes difficult to make vyn/v, less than 2, for
reasons which will be analyzed later.

In M-type fubes, the structure must dissipate nearly all the average
power distributed unevenly along the line. Usually, the thermal conduc-
tivity of the metal constituting the line (for copper, the thermal condue-

M =

tivity s about 4 watts per °C per em) is sufficient to evacuate the heat
brought by the beam or due to the of losses: it is sometimes necessary Lo
use fhad cooling msde the structure isell. There exist two more [POHHL-
Bilities of cooling, On the one hand thermal eadintion could e coneetyed
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with the use of high melting point metals such as tungsten; besides the
diffieulty of machining, the radiated power is too small for most tubes.
On the other hand, high thermal conductivity insulators such as beryllium
oxide could be used to support a strueture: this could be advantageous
at high delay factors.

It is the purpose of the theoretical developments which will follow to
show how to calculate these characteristics. In many eases, such as the
usual ladder line, the delay factor eannot be simply predicted with an
accuraey better than 10 or 20%. A model must be built (at any seale,
however) and it is necessary to know how to relate », ®, v,1./v,—the values
measured on the model-—and how to interpret these results in order to
modify the structure in the right way.

The delay structures used in the TWT do not generally involve a lumped
circuit and so must be studied by a field theory. However, the delay factor
r being, in general, substantially greater than unity, the electromagnetic
waves are tightly bound to the conductors, and it is sometimes possible
to assume that the field is stationary at least in some regions or in some
particular planes (planes transverse to the bar in the case of bar type
lines).

[t will be assumed that the structure is perfectly periodic and of infinite
length. A direct orthogonal system of reference, Oxyz, will be used Oz
being the direction of propagation, Oz the direction of the static magnetic
ficld, and Oy the direction of the static electric field. The geometric
periodicity p is called the pitch of the line.

I'he results can be generalized to eylindrical struetures. They are estab-
lished for progressive waves, and can be easily transformed to the case
ol tlosed cylindrical structure (magnetron).

Il. Floquet's Theorem

The first problem is to find what properties result from the geometrical
periodicity for the waves propagating along the structure.

We are interested in solutions of Maxwell’s equations with periodie
houndary conditions. Let us suppose that we have a complete® set f.(z)
ol solutions for some field component for a given structure at a given fre-
quency (the variables 2 and y have been omitted for conciseness); f.(z + p)
i also a solution beeause of the geometrical periodicity, and can be ex-
prossed by a linear combination of the f..'s:

J‘N{z —E— p) = E anrr&fﬂ;(z) (l)
"m
* Tlos means only that any solutions at that frequency can be expressed as a
e combination of the functions of the sel, not necessarily that the set is com-
plotic i the sense of the theory of orthogonal funetions
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This relntion ean be transformed to tts diagonal form, and we can define
new functions such that

!I‘rl(z + ;”) . Ru""‘n{z) ‘2)

The F, functions are called the modes of the system and two functions I
and F.. are identical if Fi(x, y,2) = F.(r, y, z) within a constant factor.
It follows that A; = A.; as usual, let us put A = e—7¢. Then this last con-
dition can be written:

o1 = ¢m + 2Km (3)
K being any integer.

lll. Orthonormality Properties of the Modes

In any periodie structure many modes can generally be propagated at a
given frequency, the magnitude of each being determined by the input
conditions. It is not obvious that the total power flowing through the
structure can be calculated by adding the powers of all the modes, calcu-
lated separately; the following computation proves that it is true in the
case of a loss-less structure. A more general proof is given by Butcher (1)
who also discusses the use of these properties in traveling wave tube theory
and the range of validity of the various theories currently used, which are
almost invariably perturbation theories.

We start from the mathematical identity

div[A XBl=B:-cull A— A -curl B (4)
We first, consider two modes 1 and 2 and make
A = E1 B = H; (5)
and
A = E} B=H, (6)
y Su Se
)
E EeV? ‘
¥
\\\- N \
AMmE

Fic. 1. Uniperiodic structure of pitech p. S; and S, are any two eorresponding sur-
faces of two adjacent cells, All the components of the field in 8. differ from those in
8: by a factor e for a mode.
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nnd add

iiv [E; X H + E} X Hi] = H:curl E; — E; curl H3
+ H, curl E§ — E5 curl H, (7)

Il we integrate over the volume V of a cell (limiting surfaces S; and S,
dhiown in Fig. 1), and use Maxwell’s equations:

curl E = —jowuH

(8)
curl H = jwekE
we obtain
f [Ex X H: + Ef X Hi]ds = 0 9)
Sp+ 82
I'he integral in Sy is obviously obtained by multiplying the integral in S,
hy
e—legtie® (10)
1'hen, unless ¢1 = 3, we have
j[Ele;+E§><Hz]ds=0 (11)
S

Now we shall calculate the flow of the Poynting’s vector for the total field
E, + E; and H; + H::

P = if [(Ex + E) X (Hi + H)* + (E: + E)* X (Hi + Hy)] ds
S5
=}J (EIXH’{+ET><Hst+};f (E: X Hi + B3 X Hy) ds (12)
4 Js S

P [ ExHE X H bt [ (X H X H) d
S Si

I'rom Bq. (11) it is seen that the last two terms are zerot and
P=Pi+Py (13)

The eondition ¢, = ¢% means, in the case of propagating waves, that the
two modes are in fact the same mode (if we except the case of degenerate
modes) and the cross product is no longer zero (in this case

P = Py 4+ Py + 2V P\Py).

 This no longer holds when irregularities are present, or near both ends of any
siructure; in these cases, a coupling exists between the modes and particularly be-
{ween the useful mode and the TEM mode which can often be propagated between
the line and the sole. This problem of “radiation” of guided waves is a very important
one when the delay factor is rather small,
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IV. Equality of the Magneiic and Electric Energies
Stored in a Cell

This classical theorem can be proved from the relation
div(A X B) =Beurl A — Acurl B (14)

If we make, A = E, B = H* and integrate over the cell volume V, we
obtain

0— ﬁ E X H*ds = f — jw(uHH* — «EE% AV (15)
Si8q ¥

Y. Space Harmonics

It h:SI.S been seen in Eq. (2) that the periodicity of the structure involves
the existence of modes; if F(z,y, z) expresses the dependence of any field
component of such a mode, it obeys the relation

Fiz4+p) .
A1 being a constant number which can alternatively be written e=*. The

function G = F(z)e**'» is a periodic function of period » and can be de-
veloped in a Fourier series:

+ o
G@) = 3 Guexp ( =l 5) (17
with
T (2 2\ 4 18)
m P -L P mi) p) 2 (
F then has the general form
+=
F(z) = z F,. exp I: —ile + 2mm) g:l (19)
with
1 [»
P = = / F(z) exp [jw + 2mr) _z] dz (20)
P Jy P

The field variation along 2z can be considered as the superposition of
“waves” called the space harmonies of propagation constants

By = @ —|—_ 2mw

p
with well-defined phase and amplitude relations, depending upon the
geometry of the circuit. Space harmonies are of great inferest in traveling
wave tube theory, beecause the electron beam usually interncts with o
single space harmonic rather than with the full wave.

(21)
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The related delay factors are given by
(€/Ven)m = Bun/k = (N/2wD) (¢ + 2mm) (22)

I'or power flowing in the Oz direction, a space harmonic is said to be
forward if ¢ + 2max > 0, and backward if ¢ + 2mr <0,

In general, the magnitude of the space harmonies is computed {rom
some approximate expression of F(z) in a cell; some examples of such
computations will be given later (in Section 2.2 on “Theory of Bar Lines"
by this author).

Now, let us suppose that the structure is limited by a plane Oxz above
which we have free space (for y > 0). The total field obeys in free space
ihe wave equation

AF +BF =0 (23)

I being the free space propagation constant. With the previous expansion
(19) it becomes

o + Y-

+ @ 2 2 Ji
[‘3 s o 000 i mﬂ)F“] - (29)
If we multiply by ¢/ and integrate with respect to z over the pitch, each
ferm of the sum cancels unless n = m; this involves the nullity of the
mth coeflicient,
aF,  &F,
ax? + ay?

T'his means that the propagation equation applies to each space harmonie
woparately. In the special ease where F,, does not depend on z (this is the
cuse of the vane type line), FF,. decreases exponentially above the structure,

Fu(y) = Fa(0) exp (—VBa* — k%) (26)

I'he solution with a sign (+) before the square root is useless here because
the field is regular at y = 4 (in the absence of a sole). One sees that F,,
loes not decrease above the structure if

Bl < (27)

['his defines the “forbidden zone” for which the structure can radiate

Hergy.

+ (K — B.HF,. =0 (25)

In general, however, F,, is a function of x and can be expanded in a
Fourer integral

-+ =
F.(x) = )—]“_[ e~ T2, dT (28)

with

Fonr 1 . fFFale)e’ dy (29)
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As previously, we have for ench fy component
Fur(y) = Fr0) exp (— VBal + 1% — Iy) *(30)

Usually the field variation along = is slow and we could assume I' << f.,;
putting Bn = V8.t — k* we have (with a coarse approximation)

F () 2 Foup(0)e =8 ntig = T/26m’ 31)

It can be shown that F..(z, y) is deduced from Fn(x, 0) by a Gauss trans-
form

= m r ! ©
Fulz, y)zc‘ﬁ'"”\f%-”; f_,, Fo(X', 0) exp[—g—'y(x —.r)ﬂ] ix’ (32)

Physically this means that the sharp variations of the field in the « direction
disappear above the structure.

VI. Group Velocity and Energy Velocity

The group velocity in a medium can be considered as the velocity of a
pulse shaped signal; in general, such a signal becomes distorted and spreads
in space. A velocity can be defined by considering a signal covering a very
narrow band of frequencies, or consisting of two waves of slightly different
frequencies, /2w and (o + Aw)/27. In the case of a uniperiodie medium,
they have equal phases if

wl — Bz = (0 + dw)t — (B + AB)z (33)
The group velocity is defined as
z Aw dw 7
t!l“ — E e E—ﬁ-—) 6.8 (34)

This definition applied to each space harmonic gives the same value for
the group velocity in a periodic system
dw
=p 35
vll p a'P ( )
An energy velocity can also be defined as the ratio of the power flowing
through the structure to the average stored energy per unit length
l)
ve = 37
(This definition reminds one of the flow velocity of a liquid in a pipe, which
is the ratio of the flow to the quantity of matter per unit length.) It can

be proved that v, = ve; the proof starts as in Section ITL. Now, in Eq. (7)
Ey, H; are the fields existing at @ and s, H, after a little variation Aw of w.

(36)

) [
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At w. the fundamental phase shift is e, and 4t w + Aw it is ¢ + Ag; then,
the integral of the left-hand term of (7) s
{eide* — 1)4P ~ jAg*4P (37)
andd the integral of the right-hand term of (7) is no longer zero because of
(he variation of @ but jAwsd W, W being the total energy in a cell. Then, we
have (4)
AeP = BdaW (38)

i (39)
In the case of a loss-less triperiodic structure the equality between v,
andd 7, holds (2). The three periodicities are defined by three vectors
p.(i = 1,2, 3) which define a parallelepiped, the face opposited to p: being
4, The propagation in such a structure is defined by the three phase

whifts ¢, or by the propagation constant 8
B:-pi = ¢i + 2ha (40)

Vg = Vo

h, l:(‘i]lp_; integers.
The group velocity is defined by

AB.v, = Aw (41)
Af being any small vector which satisfies Af = B(e + Aw) — B(w). The
energy velocity is defined by
_ .1_ = . (42)
ve = 5 2'3 P.p:
I, being the power flowing through s, and W the stored energy in a cell.
The same computation as in the one-dimensional case led to
> AgiP; = AwW (43)

but, from (40) and (42),
46-v. = 753 AoiPi = dw (44)
¥

AB having an arbitrary direction. The comparison of (44) and (41) involves

Vi = Ve

VIl. The Reactance Theorem and Dispersion

In some cases, a delay structure can be considered as a filter consisting
of pure reactances, generally not lumped. Then, it may b-e usef}ll to know
how such reactances vary with frequency and how their vamations act,
on the dispersion curve of the delay structure. -

let us consider at first a loss-less cavity connected to a coaxial line so
{hat a reactance X can be defined at a given frequency w/2x. If U is the
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clectric energy and 7' the mugnetic energy stored in the cavity, it can be
proved (3) that the variation of X with w is given by
wdX 1+ U
X dw /T T

Now, let us suppose, for example, that the equivalent filter is oo with

(45)

7 ¢ , L A

Fis. 2. Filter involving a series reactance X and a shunt suceptance Y, which can
be related to a ladder line if X and Y are ¢ dependent.

shunt suceptance Y and series reactance X (Fig. 2). The classical theory
of filters leads to the fundamental phase shift

D) sin"—; =% XY (46)
Then, the dispersion is
vph _ tan (¢/2) (w/X)(0X/0e) + («/Y)(3Y/dw) (47)
Vg - 'Pfg 2

from which can be seen that purely capacitive susceptance and purely
inductive reactance lead to the least dispersion:

vpn  tan (¢/2) |
Vo, ., SAECNPPS, 4
Ug ¢/2 s

In fact, X and Y represent in many delay structures short-circuited or
open-circuited bifilar lines of length {, and then

w X w Y 2kl

Xow Yow sin2kl (49)

Furthermore, X and ¥ depend also on the phase shift because of the
coupling between the cells; this dependance on ¢ usually increases the
dispersion. The ¢ dependance of X can be caleulated for some simple
structures. For a tape structure, it is found to be

2 X _ 2. oot? (50)

This effect is quite important. In a ladder line, it will double vy /ve-
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VIIl. Perturbation by a Current—General Cases

[ et us consider a structure with a fundamental phase shift, ¢, at angular
{requency, @, and suppose that a current density, |, at the same a,ng.ulu,r
frequency is introduced in a cell. ¢ is modified by Ag and the problem is to
compute how Ae depends on l.

We shall use again the expression (7); E,, H: will be now the fields with-
aut, and Ez, He the fields with the current. The only change is the fact that
(he current 1 must be introduced in the Maxwell equation for He:

curl Hy = joek: + 1 (51)

I'hie integral of the left-hand term of (7) is
jAgAP (52)

(he integral of the right-hand term of (f) is
- [ Ezl' dv (53)

from which .
J *

st = () [ BN (54)

[ must be reminded that Ei is the field before the introduction of the cur-
rent. and differs (not necessarily slightly) from the total excited field a,ftxlar
(i current perturbation. Obviously the computation assumes t,.hat Ag 18
anall compared with ¢, but this implies only that E, or I* or v is small. {
I'his computation is useful to us in four cases:

A. THE ALTERNATING CURRENT OF THE BEaM

Ihe formula is used in the study of the interaction between a beam a_md
\ delay structure. In particular, let us consider the case where | co_nmsts
of two parallel current sheets of surface current density ly and —Il, distant
ly e; if we assume that ge is very small before unity, (54) becomes

iy ok i
A 2= (4P) ay (55)

3. Tug CurrENT LAYER EQUIVALENT TO ANOTHER
DELAY STRUCTURE

The formula can be used to study the coupling between two delay st'ruc-
(ures of width L. Efficient coupling is provided when one space har.momc of
(he first structure is nearly synchronous with a space harmonic of the

it 'l‘nl\(l.

i 1 is assumed to be zero everywhere in V except in the volume v.
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Let us suppose that we have a plane strueture, uniform wlong «, and
that the relevant space harmonie has a propaguation constant f and a
coupling impedance 6t; the rf field will be obtained from the definition of
(R

On the other hand, a layer with a charge density p. corresponds to a
current density I, such that

divl, = —jwps (56)
or
_jlﬂfa: = _.-'.‘*’Ps (57)
It ereates an eleetric field :
AR .
F; = % (58)

Consequently the layer equivalent to the delay structure must have a
current density with

Is, = _gj § él])‘i:; (59

This equivalent current layer directed along the propagation direction
must not be confused with the physical current in the structure (for)
example, in a helix, where the current does not necessarily flow in the di-
rection of propagation). The second structure can be considered as causing
a perturbation of the first, and reciprocally. This gives the propagation
constants of the two structures considered as a whole, as a function of
their two free propagation constants S and Buw.
- 2 1/2

B =5 (Bu+ Bu) = [(——ﬁ“‘ = 3”) 5 w]’ (60)
In the ease of two planar struetures distant a apart and having coupling
impedanees ®; and @®,, the coupling factor M* is

M2 = Gie~81Gae—F 2 B1yB20 61)
If the two structures are identical, and By = Bw = f, B = 02 = R
B — Bo = =PoRe—He (62)

C. PERTURBATION BY A DIELECTRIC

The eurrent | ean be a displacement current resulting from the intro-
duction of a material of volume », with a relative dielectric constant e.
Then, we have

I = jwes(e — 1)Es (63)
and
Ap = (9&(%1‘2) f E{E. dv (64)
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One ean limit such a delay structure to n cells so that it can be considered
s o eavity with nresonant frequencies for each mode of propagation, the
{ollowing condition being satisfied:

Bnp = K, K integer (65)

‘Ihen, it is possible to measure the frequency variation Af resulting from
the introduction of the dielectrie; Af can be deduced from the Ay of the
unlimited structure from the following equation

— Af/f = (ve/vpn)-Ae/e (66)
I'vom (39), (64), and (66) Af/f can be written

E]Ez dv

aflf =301 - B— ©7)
ﬂ_E:Ez dv

where V is the total volume of a cell, and E,;, E; are now the fields in the
resonant cavity.

Let us consider a special case (Fig. 3); the structure is planar and uni-
form along x; the perturbating dielectric is a parallelepiped and has the

¥
7 )
7

7

Reflecting|~ o A Reflecting
piape)] @ % . plane
NIINEN :
S %\\- bar;/\ &

ING200770720077. 4!. 7
RF Input detector

['i;. 3. Cavity formed by a delay structurc terminated by two reflecting planes (5
«olls). The resonant frequencies are slightly shifted by a piece of dielectric; the
coupling impedance of such a structure can be deduced from the frequency shift.

length (along Oz) of the limited structure, its width is { (smaller than that
of the structure), its thickness is e and the distance from the structure
plane Oxz to the bottom of it is a. Then, using (67) we obtain the value
of the coupling impedance from the frequency drift, Af, by:

& = U g2 (Q+e/l —0 — (1L —¢/1 4 e Af
e == I

(68)

Uy




30 J. ARNAUD

This expression assumes that one space harmonic only is present in p;
this is an important limitation mainly in the case of the interdigital line.

D. Tue Inpucep CURRENT IN A REan Convucrive LAvsr

In this case Ag is purely imaginary as long as the conductivity o is
small, that is to say, as long as the electric field in the vicinity of the layer
is only slightly disturbed by the layer; the computation of the atteunation
is obvious. When ¢ is not very small we must take into account an F,
discontinuity across the layer,

Bk,

E, —E, = (69)

ey

In the particular case (Fig. 4) where the conductive layer is rectangular
and parallel to Ozz, distant from it by «, of length L, and of width I, we

Y

L

b

conductive fayer (o)

LN E

I

Fia. 4. Delay structure attenuated by a conductive layer of known conductivity ; the
input power is P, the output power AP; the measurement of A gives the coupling
impedance of the structure.

have a power attenuation A (ratio of the output power to the input power
for a progressive wave) related to the coupling impedance by

1k ¢
® = —L A\[z”—-
%2 N o 8L

(o]}

This expression, like the previous one, is useful in the measurement of the
coupling impedance of a structure.

E. Tae CurreNT LAYER EquivarLent 170 Prane WavEes
ProPAGATING ON T'wo Pararner Brreriopic STRUCTURES

In the ease of biperiodic structures (54) becomes

il dy
s J (71)

W
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The same method as in VI B led to
. Vin . Y _ A )
(B — Bu) ™ X (B — Bu) =M (72)
Ui Upa

The interaction between the two structures is important only when

(i~ Bu: in these directions 8 can be written, around By = B = Ba,

B — Bw = xu1 + Xaue (73)

with
xixa = M*? (74)

wnd
u,-;J:: = 8y (75)

IX. Babinet's Principle

The well-known Babinet principle used in opties can be transposed for
the study of tape structures of complementary shape. If a structure is
constituted by an infinitely thin conducting sheet with periodie slots, the
dispersion curve of a complementary structure (this means that the super-

¥
y — 7 IE' z
E'
H, Hi
ﬂ-a -_fEi I : = -
H=

i 5. Complementary tape structures; the magnetic field of structure Il is equal,
within a constant factor, to the electric field of the structure 1.

position of the two constitutes the whole plane, Ifig. 5) will be shown to be
the same.

[t is obvious that in a tape structure, the electric field is in the plane of
{he structure in a gap and normal to it on the conductor; and reciprocally
for the magnetic field. Let us assume that Ei, Hi are the fields of a wave
propagating along structure I; the two sets of fields E;, H: defined by

E1:|:\/QH2=0
L]

H + \*ﬂi E:=0 (76)

ilso satisfy Maxwell’s equations. The boundary conditions are satisfied on
the structure I by E;, Hy and are satisfied on the complementary structure
I1 by E:, H: if we make use of the upper sign above the structure (y > 0)
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and of the lower sign under the structure (y < 0). Then E;, My constitute
the fields of the wave propagating on the structure 1. We can remuark that

El X H1 = Ez X H! (7?}

Poynting's vector is the same for the two structures but the electric and
magnetic fields are interchanged. As an example, let us consider an infi-
nitely thin interdigital line, and its complementary “zigzag” line; they
have the same dispersion curves. In thig particular case, in addition, the
symmetric space harmonies of the interdigital line become antisymmetric
waves in the case of the zigzap line.

List of Symbols

T, 2 coordinates

A B arbitrary vectors

An A1y A eigenvalues

o, numerical coefficients

f(2), F(z), G(2) functions

fi frequency

(i velocity of light

w angular frequency

k(= w/c) propagation constant

A (= a7y free space wavelength

€0 vacuum permittivity

Mo vacuum permeability

Uph phase velocity

B, 8 (= w/vp) delayed propagation constants
B propagation constant of the mth space harmonic

Bn (= VB2 — 1)
p,(z - 1: 2: 3): P

propagation constant in the Oy direction
pitch or periodicity of line

ei{i=1,23), ¢ (= Bp) fundamental phase shifts
T (= B/k) delay factor
dw ]
Vg ( =p CE) group velocity
l line width
Ps(t‘ =1,2,3)
P } rf power
W stored energy/unit length or surface
ve (= P/W) energy velocity
E, E electrie field

R (= EE*/28'P)
® (= RKl/V m/e) coupling impedance
r transverse propagation constant

Pierce coupling impedance
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\ reachianee
) susceptance
/4 stored magnetic energy
{ stored electric energy
| current density
0 surface conductivity
e surface charge density
i, distance in the Oy direction
\/ coupling factor
p relative dielectrie constant
1 length of line
A power attenuation
m, K, n .
Wi =1,2,3)] Integers
8,82 8 limiting surface of a cell
V volume of a cell
1 volume of a dielectrie
¥, Krocker symbol
uli =1,2) basie veetors
koL surface eurrent density
M magnetic field
Vi vector group velocity
Vo[t unit vector directed along vector group veloeity
X1y X2 components of the propagation constant
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