Reprinted with the permission of the Optical Society of America from Applied
Optics, Vol. 8(8), pp. 1687-1693 (August 1969).

Gaussian Light Beams with General Astigmatism

J. A. Arnaud and H. Kogelnik

This paper considers the propagation and diffraction of coherent light beams through nenorthogonal
optical systems such as sequences of astigmatic lenses oriented at oblique angles to each other. The
fundamental (gaussian) mode has elliptical light spots in each beam cross section and ellipsoidal (or
hyperboloidal) wavefronts near the axis. Tt is found that the orientation of the light spot differs from
that of the wavefront, and changes continuously by as much as 7 radians as the beam propagates through
free space. A theory of these general astigmatic beams is given and simple experimental observations are
deseribed. The coupling factor between two such beams is also given.

Introduction
This paper considers the passage of gaussian beams
of light through nonorthogonal optical systems.!

A sequence of two or more astigmatic lenses with
oblique orientations is an example of such a system.
Nonorthogonal optieal configurations are encountered
in special optical cavities,? helieal gas lenses,34
and in systems where optical beams are refocused and
redirected in two dimensions by spherical mirrors. In
nonorthogonal arrangements, the conventional laws®
which govern the propagation and diffraction of light
beams are no longer applicable. It is the purpose of
this paper to diseuss the laws for light beams produced
by such arrangements.

To demonstrate the failure of the conventional laws
of beam propagation in these optical systems, let us
consider a stigmatic fundamental Gaussian beam, i.e.,
a beam with a cireular light spot and a spherical wave
front in every beam cross section. The beam radius
or spot size w of this beam is the same for the two
transverse rectangular coordinates (zy), i.e., w, = w,,
and the corresponding radii of curvature of the wave-
fronts I are also the same (R, = R,). The propaga-
tion laws for this beam are well known.s Assume that
this beam passes through a thin astigmatic lens with
different focal lengths f in the z and y coordinate
(f: # f). The resulting beam is “astigmatic,” with
elliptical light spots (w, # w,) except in a few isolated
cross sections, and with ellipsoidal (or hyperboloidal)
wavefronts (with R, = R,). But in each ecross section
the ellipses of constant intensity and the ellipses of
constant phase have the same orientation, and this
orientation remains constant while the beam propagates
in free space. It is known that the conventional
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propagation laws ecan also be applied to this beam since
the propagation can be considered independently for the
x and the y coordinate. Now let this beam of simple
astigmatism pass through another astigmatic lens,
oriented in the z—y plane at an angle with respect to
the first lens. The beam emerging from this lens is of
general astigmatism with eonstant intensity ellipses
and constant phase ellipses (or hyperbolas) oriented at
an oblique angle with respect to each other. Just
after the second lens, the axis of the phase ellipse is
rotated with respect to the phase ellipse of the incom-
ing beam while the intensity ellipse is unaffected. We
shall find that, even in free space, the orientation of the
ellipses of the outcoming beam changes along the path
of propagation. We will restriet the discussion to the
propagation of fundamental modes along the axis of
lossless, nonaberrated optical systems.

The transformation of astigmatic ray bundles by
nonorthogonal optical systems has generally been con-
sidered in connection with the transformation of skew
rays in optical instruments.! The stability condition
for periodie nonorthogonal systems has been recently
given by Kahn,® on the basis of geometrieal optics, and
the trunsformation of gaussian beams by nonorthogonal
systems has been discussed by Suematsu and Fukinuki.t

The caleulation of this paper is developed along the
following lines: we start with an astigmatie ray penecil,
which is defined by three real parameters; these are the
axial positions of the tangential and sagittal focal lines
and their angular orientation with respect to the
transverse coordinate axes. It is well known that the
field of a gaussian beam with simple astigmatism is
formally deseribed by the same expression as the astig-
muatice ray pencil, except that complex values are used
for the positions of the focal lines. We formally ob-
tain a gaussian beam with general astigmatism by at-
taching a complex value to the angular orientation of
the foeal lines. A gaussian beam with general astig-
mstism is then deseribed by three complex beam param-
eters,
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I. Solution for General Astigmatism

i Thc propagation of laser heams in free space is
governed by a Schrrmdmgnr—type WaVe equition?: -
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uhﬂ:a}r:;: Lo 2 15 a rectangular coordinate system
e the complex amplitude of the electric field, ¢ d,
the Propagation constant is fr — 2n/X ot
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:!.her I: ?g: an'd o are complex constants which describe

1€ beam waist radii and (he positions of the beam
Waists in the xz and yz planes. i
: .'Ih'u bea_m deseribed by Eq. (2) is astigmatic, It hus
Flhpm:‘:al light spots, but both the ellipses of constant
mteps;ty and' the ellipses (or hyperbolas) of cun;*t-uﬁ
phase are oriented along the z and ¥ axes in ev:?n'
cross section of the beam. We call it a beam wit}
simple astigmatism, - 3

If we rotate this beam by an angle ¢ uround the -
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It is, .”f course, still a solution of Eq. (1).
" It .1;‘; msy to verif:r' that the expression given in Eq.
,') remains g ._nmh_ltmn of Eq. (1) even for complex
:(duojq of ¢. We find I:hat; a rotation of the beam by a
“o?;]p ex uflgl‘e &= B+ ja !eads to a gaussian beam
1th general astigmatism which has the configuration
required to deseribe a fundamental mode of light pro
agating through nonorthogonal systems. It ca.npali)c:
he ob_served that the regl part 8 of ¢ rep.resent.es i {re.';l'
;;{:ltt(:?r(:n qf tl}o beam, .which leaves unaffected the ﬁe!ci
ze;R: f Ulr, 3;21; 11:;; iigrl.lowmg section, g will be set equal to
i (04 )c‘:rl: tﬁ:\ ;:,t.?n the argument of the exponential in

o
5 [Qur® + Quyr + lnZe(Qs — ey, 15
where

Q0 = (Cos?e ) + (sinep gy )

(6
Q= (sin®p/g,) + (coste qy),

:L‘nd the ¢ parameters are of the same form as in E, (3)
l'_or :,:‘rea!, we have the solution of simple :isti{rr;g:fi;n;
given in Eq. (2), and for 7@t = q: we have Q, —-”Q i 0
and a gaussian beam with rotational symmetr ] :
fice that 1rhc field on axis ( =y = 0) does notyciepgarig
:;1(12;5.0'1' r.(.Jm Eq. (4) i‘t follows that the phase shift
5 _!\])f:‘llt‘{l{’.(‘d on axis by 4 generalized astigmatie
am 18,1 vacuum (as for g simply astigmatic beam)

®(2) = — 4 [Phase of (¢1) + Phase of (e )]. (7)

“_(i:qu;mun (2) gives a simple muthematicy] deserip-
- ﬁ? :l_ gausstan beam with geners] astigmatism,
I 1€ next sections we discuss the properties of such y
eam 1n more detail, . ‘

Il. The Beam Configuration for
General Astigmatism

ha{“ study the beam configuration more closely, we
: w to mntroduce real-valued beam parameters. [t
urns out that the ellipses of constant intensity and the
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Fig. 2. Circle diagram for the parameters ¢, and qs.

ellipses (or hyperbolas) of eonstant phase change their
orientation along the z axis. Therefore, it is conve-
nient to introduce rotating coordinate systems (.7,
and (£z.mz) whose axes are aligned with the major and
minor axes of these ellipses

o= Ep COS@wm — M sin v = ER COS@eR — 9R SiNegr,
(8}

£y sing, + Tuw COS@w = ER ."il\??.ﬂ' + e cOsen.

i
The angles of orientation ¢,(z) and ¢x(z) of the two
coordinate systems, i.e., of the constant intensity and
phase curve axes, with respect to the original coordinate
system are given by

tan2ee = (g — po)/(w1 — w2)]th2ex (9a)

tan2er = — [(en — @) /(g — p2)|th2e. (9b)

Here we have put

¢ = Ja,

l,’"q; = g —jw. e l;"’(j?). + 2.), I'- == 1,2, i'“”

pilz) = zi/tz* + p?)

wilz) = pi/lz* + pi®)
using real valued parameters p,, @, p;, and z.. The
constant quantity 2p,(=b,) is usually ealled the con-
focal parameter, and z; = z-zy; is a linear funetion
of the z coordinate. For simply astigmatic beams,
zy; 1s interpreted as the position of the beam waist, but
this physical interpretation no longer holds for general

astigmatism,
Using the rotating coordinates, Fq. (5) ean be writ-
ten in the form

ot o[ (24 2) g (2 )],
¥ = A (qige) {??-P[ (135*+18u' Ty fl’£+ iy

(11

.

The principal beam radii or spot sizesaw, and w, are given
by

Mrwga® = } oy + we £ (w1 — w)%h®2a + (o1 — p2)'sh*2a] ]
(12)

and the principal radii of curvature of the phase front
R, and R, are obtained as

(Ren)™V = 5 ipr+ pu £ [(o1 — pu)eh®2a + (0 — “’“25;?'2:2“1”'
(13)

The form of BEq. (11) is similar to that of & beam with
simple astigmatism. But in the latter case the co-
ordinates ¢ and n are fixed, while for general astigma-
tism they change their orientation along the z axis.

In each beam cross section, the ellipses of constant
intensity are deseribed by w; and w,, which are the
principal axes of what we shall eall the “spot ellipse.”
Correspondingly (R¢)* and (R,)} are the principal
axes of the “phase ellipse” (or “phase hyperbola’).
This is illustrated in Fig. 1.

Equation (12) deseribes the expansion of the beam.
It replaces the hyperbolie expansion law for stigmatie
beams, or beams with simple astigmatism.

The relative orientation ¢, — ¢4 of the spot ellipse
and the phase ellipse is obtained as

o R L SO

tan2l e, — en) = sh2ach? e
@ — ws po— g
The two ellipses ean only be aligned (i.e., ¢, — ¢x =
0 or m/2) for the special cases of & = 0 or ¢ = g», which
are the cases of simple astigmatism or perfeet stig-
matism.  In other words: for general astigmatism
(e = 0) the spot ellipses and phase ellipses are never
aligned.  Similarly one finds that the spot ellipses of
beams with general astigmatism never degenerate into
circles.
It is interesting to note that the product
tanZey tan2ep = —th?2a (13)

is independent of 2.

To illustrate the propagation properties of a beam
with general astigmatism as predieted by the relations
above, let us consider a typieal numerical example.
For this we choose a wavelength of 1 gm, and beam
parameters with the values p; = 0.5 m, p» = 1.5 m,
zn = 0.5 m, and 2z = —0.5 m. The evolution of the
two ¢ parameters of Eq. (10) ean be traced with the
aid of a circle diagram® as shown in Fig. 2. This is a
chart in the complex plane of j/¢, with the axes w, and
pi.  The values corresponding to ¢, and ¢ as 2z varies are
located on two corresponding eircles,  Parameter values
obtained for given values of 2 are shown connected by a
straight line.  The tangent of the angle of this connect-
ing line with respect to the Ow axis is equal to (p, —
p)/ (w1 — wi).  This is the value used to determine the
ellipse angles ¢, and ¢p in Eqgs. (9). The connecting
line is seen to tumble through a total angle of 27 radians
in the interval of 2 = — @ to2 = o, and its angle in-
creases with inereasing . IFrom a similar inspection of
the circle chart, it follows, quite generally, that (for
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Fig. 3. Plot of puand gg for x = lpmyp = —05m; = 1.5
m,ze = 0.5m, and e = —0.5m; sh2e = 0.2and 1.0 (le, a =

(.10 and 0.44), respectively,

positive a) both ¢, and ¢z increase with increasing z,
and each angle changes by a total of = radians from
2= —=10z=+=. Iigure 3 shows a plot of @
and ¢g for the specific parameters chosen above and for
vail:fe:_ﬁ of sh2a = 0.2 and sh2a = 1.0 which satisfy the
stability condition [Eq. (17)] discussed in the fol]uvwing
section. Note that the fast changes of @ and ¢g occur
in the confoeal regions of ¢1and ¢, and in the vieinity of
z values where w; = w, and p;, = py, respectivély.
The dashed lines are approached for very small values
of a. .-

Figure 4 shows a plot of the principal axes w; and
w, of the spot ellipse for our numerical example.
Entered for comparison are plots of w; and w, which are
the beam radii of gaussian beams with the parameters
grand ¢, respectively (@ = 0). Note that we is always
smaller than w, and w., and that w, is always largér‘
From Eq. (12) it ean be shown quite ,'!;Eil(‘r:l]]\’:. that the
spot ellipses of a beam with general ugt-igmutism
(e # 0) are always more elongated than those of the
corresponding beam with simple astigmatism (o = 0).
We have mentioned before a somewhat related finding,
na:_nely that one never gets a cireular spot for general
astigmatism.

ll.  Limitations on the Value of «

In Sec. 1 a complex angle of rotation ¢ = g + Ja
was used to generate solutions of general astigmatism,
To rg:‘erict, the solutions to beams with intensities de-
creasing with distance from the optie axis (z axis), we
have to impose restrictions on the value of . We have
to postulate that the principal axes w; and w, of the spot
ellipse given in Tq. (12) are always real.

This condition can be written in the form

,,-};22“ _<. |2!_" Z_!]! -f— (p. -‘-—p:):

(21 — 20 + (p — p)? as)

or, more compactly
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ch2e < =07 'i-
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This condition is independent of 2z, which means thar «

confined beam remains confined near the optie axis as
l‘-he*beflm bropagates through free space.

Notice that, from Eq. (17), if ¢ and g, are both real

@ must be equal to zero, and we get the astigmatic ray

pencil solution. 1In that case the beam reduces to two

focal lines, perpendicular to each other, at two planes
(generally distinect).

IV. The Far Field

The divergence of an astigmatic beam and the
geometry of the far field are easi ly determined from the
rlclfxtlons given in Sec. II by letting 2 approach in-
finity.  From Eq. (10) we see that

|

pi =+ Lig,

(18
and

wi — Pz

asz— o. The far field orientations ¢w and ¢p of the

E(I:g;; ellipse and the phase ellipse follow from Eqs. (9a).

" 21— Za
tan2g, = — == o, (19a)
P — p:
N — Da
tanlder — £l ¥ th2e. (19h)
& — Za

?‘he.# relative orientation of the ellipses is given, in the
limit of large z, hy

tan2les — pg) = —sha cA2a (“-;f’--"- By L—p’)‘ (20)
m = ps =2
I"?r the far field angles g, = (we/2):~w and 6, =
(w,/2) ;. «, we obtain from Eq. (12)
Vegy* = (=/20){p + ;o = () — po)ich?2a
+ (& — z)%shR2a]d), (21)
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Fig. 5. Coupling factor between a beam with simple astigmatism
(@ = 0) and a beam with general astigmatism (a). For both
beams gy = 0.5m, ps = 1.om, 2z = 0.5 m, 2 = —0.5m, 8 = 0.

V. Beam Transformation by Lenses

We have shown that a gaussian beam of general
astigmatism can be described by two complex beam
parameters ¢; and ¢ and by a complex rotation angle
¢ =8 + ja around the z axis. This section considers
how these three complex parameters are transformed
when the beam passes through an optical system. For
the case of an optical system with rotational sym-
metry, it is easy to show that ¢, and ¢, are transformed
according to the known ABCD law (Ref. 5) and that ¢
remains unchanged. The transformation of gaussian
beams through arbitrary optieal systems is formally
the same as the transformation of astigmatic ray pen-
cils except for the fact that ¢, ¢, and ¢ are complex
rather than real quantities. It is, consequently, easily
expressed as a funetion of the elements of the 4 X 4
ray matrix of the system. This transformation, ob-
tained before from a different method,* is not re-
produced here. In this section, we use the wave optics
point of view to calculate the transformation of a beam
through a thin astigmatic lens, arbitrarily oriented.
Together with the transformation laws in free space
given before, this result also allows the (computer)
analysis, step by step, of the transformation through
any optical system. Similarly, the phase shift along
the optical axis can be obtained by using Eq. (7).

A thin astigmatic lens with focal lengths f; and f»
oriented at an angle » with respeet to Oz introduces a
phase shift

(o s o (s o),
2 h Ja . Ji Ia Y

| k
+ sin2y (} - f:) a'-y:| =_ [Fie? + Fay® + tan2e(F: — Fi)zy],

2 1

(22)

where we have defined the new lens parameters F,
and F. similarly as the quantities ¢, and @, in Eq. (6).

The laws of transformation through the lens are
simplified by using the beam parameters @, @s, and ¢
rather than g, ¢», and ¢. If we denote by a prime the
parameters of the outgoing beam. we get from Egs.

(5) and (22)

Q' = — Fy
Q) = @, — F,

tanZe(@: — Q1) — tan2p(Fy — Fi1)
(Q: — Q) — (Fa — F1)

If, after this transformation, we want to go back to the
original qi, ¢z, ¢ parameters (which are more convenient
for the transformation in free space), we may use the
relations inverse of Eqgs. (6)

2igae = Qh+ Q£ [ — Qs)/cos2e]. (24)

The relations of BEq. (23) can be used to derive
quantities that are invariants of the thin lens trans-
formation. An obvious example of such an invariant
18

(23)

tanZe’ =

(™t @™ = @™+ )" (25)

One can use these invariants and show, after some
algebraic manipulations, that the condition of Eq.
(17) is an invariant of the lens transformation. In
other words: a confined beam remains econfined after
passing through an astigmatic lens as one would expect
on physical grounds.

VI. Beat Signal from Gaussian Beams with
General Astigmatism

When two optical beams are incident on a large
square law detector the intermediate [requency current
that they generate is proportional to their coupling
factor

Cap = f E E*ds, (26)
zy plane

ks, and K, being the fields of the two beams, which are
taken as having the same polarization and a small
frequency difference. The normalized coupling factor

Cop = Cob.-"Cau*Cbbil 27)

as it departs from unity, expresses a difference in in-
tensity distribution or wavefront shape between the
two beams. The square of the modulus of C, (power
coupling factor) is of interest for the problem of mode
conversion. It was given before for the case of simply
astigmatic Hermite-gaussian beams.” For the case of
two gaussian beams with general astigmatism, we get,
substituting the expression of Eq. (4) of the fields into
Eq. (26) and integrating

can = (qre — qu*)gu™® — qa) — (Q1a — (2a)
X (qu — qu)tcos?ea — @*), (28)

tas being independent of z, as expected.

The normalized coupling factor Cyp has been plotted
in Fig. 5 for the sets of parameters considered before:
for both beams we take p1 = 0.5 m, p, = 1.5 m, z0 =
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Fig. 6. Photograph of the spot ellipse at various distun o z from
the second eylindrical lens (z:= 0). ‘Tha beam parameters at z
= 0 {ealeulated from the measured beam waist before the first
evlindrical Tens) ape: = =665 4+ j0.61 mm, ¢, = 0.00005 s

J019 mm, ¢ = p27 XI07T 4 5047 % 103,

05m, 2p = —0.5 m. and B = 0. For beam a, « is
taken as equal to 0. Can, which is real-valued in that
special case, is plotted as a funetion of the value of o
assumed by beam #.

We notice on this curve that the coupling factor
vanishes abruptly as o reaches the limiting value given
in Eq. (17); this results from the large areq occupied by
beam b when this critical value of a is approached,

VIl. Experiments

Experiments were made at a wavelength of 6328 A to
verify some aspects of the outlined theory.

A coherent optical beam in the fundamental mode
was sent through two eylindrieal lenses. The first lens
was aimed at gencrating o simply astigmatie beam,
and the seeond lens, oriented at an angle of 45° with
respect to the first lens, transformed this beam into a
beam with general astigmatism. The beam waist of
the input beam wis positioned at a distance of 500 mm
from the first Jens. The focal lengths of the first and
second lens were, respectively, 230 mm and 200 mm
and their separation was 500 mm,

The spot ellipse was observed at various positions
along the beam axis and photographed. Figure ¢
shows how the spot ellipse is transformed as the dis-
tance z from the second lens js increased. At z = 0
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the spot ellipse is close to a horizontal focal line
Away from that plane, it rotates and becomes close to
vertical focal line.  Furthey away, the rotation goes on
as the beam expands and, eventually, the far field
limit angle is reached.

A similar evolution of ap astigmatic beam was ob-
served for several ¢ parameters of the input beam and
the orientation ¢w of the spot ellipses was measured.
Figure 7 shows the values of ¢, as a funet ion of z for
an input beam of 2 = 500 4+ 7 16.4 mm at the first
lens (beam waist radius = 57 um).

This experimental result has been checked against
the theory given before in atwo-step procedure. First,
the parameters of the beam (with general astigmatism)
at the output of the second lens are caleulated from the
Value of g and the lens separation and foeal lengths
given before. This is made by programming Eqs. (6),
(23), and (24) and using a computer, The numerical
results are given in caption of Fig, 6 and 7. The spot
ellipse orientation ¢w 1S then caleulated as a funetion of
z from Eqgs. (9a) and (10). The agreement between
the theoretical and experimental curves, shown in Fig.
7 isvery good. Beeause the value given to the imagi-
nary part of ¢ is small compared with the system dimen-
sions, the eurve given in that figure stays close to the
geometrical opties limit corresponding to a homocentrie
input ray pencil. Computer caleulations show that a
significant departure from this limit oceurs when the
imaginary part of ¢ is comprised between 300 mm and
1500 mm. When the imaginary part of g is much
larger than 1500 mm, the input beam becomes close
to a collimated ray pencil and another geometrical
opties limit is approached.

VIII. Conclusions

We have discussed the propagation and diffraction of
coherent light beams in nonorthogonal optical systems,
A simple mathematical deseription for the fundamental
mode was obtained. [t corresponds formally to a eon-
ventional astigmatie gaussian beam rotated around
its axis by a complex-valued angle. Three complex
parameters are necessary to describe such beams of
general astigmatism; these are the two (conventional)
complex beam parameters ¢ and ¢ and the complex
rotation angle ¢, Restriction to confined beams im-

-
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Fig. 7. Theoretical and experimental (eircles) values for the
orientation of {he intensity ellipse (¢,) as a funetion of the axial
distance 2. The heam barameters at z = () are §i = —660 + ;5

52,1 mim, and 7= 0.406 4 j 16.4 mm, ¢ = 0.00202 4 5 0.041,

poses an upper bound on the imaginary pa}"t._ of o.
A beam with general ast_igmaltlsm has a guuh?m}n “m—
tensity profile with elliptieal light spots in Ei‘kchl.r}f:.l.!:j
eross section and elliptical or h_\tperbohcui curves o }LE“. :
stant phase. The axes of L_he light spots _:md .t.he ptm,;(
curves are oriented at ohhflue Exnglc;;l with 1elapel[_:a.' 0]
each other and change Fhelr ormnt-atmrn as t.lhi.’ ‘n.tm}
propagates and diffracts in free space. The m}ttlt.l(;:l. [()] 1
the spot ellipse of such he:m"ts in free space has :H_th
observed experimentally, and is in good agreement, wi
i heory. _ ‘
t,h%«%u}tizszciﬂtm trgatcd the t rm.l:sfornmtiuu of an ;Lﬁlt_-Lg;
matic beam by a thin astigmatic lens and the coupling
between two astigmatic beams relevant to beat experi-
mEp‘Fﬁ: authors express their thanks to D. C. [{ogg_ for
useful comments. The assistance of R. J. Novy to

gratefully acknowledged.,
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