PHYSICAL REVIEW B

VOLUME 62, NUMBER 20

15 NOVEMBER 2000-11

Fluorescence from a few electrons

Jacques Arnaud
Mas Liron, F30440 Saint Martial, France

) Laurent Chusseau
Centre d Electronique et de Micro-optoélectronique de Monipellier,* Universite Montpellier 11, F34095 Montpellier, France

Fabrice Philippe’
Laboratoire d Informatique, de Robotique et de Microelectronique de Montpelliier, 161 rue Ada, F34392 Monpellier, France
(Received 5 June 2000)

Systems containing few fermions (e.g., electrons) are of great current interest. Fluorescence occurs when
electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium
are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence
is casily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of
electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are
in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption
that single-electron energy levels are evenly spaced. and that energy coupling and spin coupling between
electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short,
nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the
Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricied partitions of integers. The
method is considerably simpler than the ones proposed earlier, which are based on second quantization and

contour integration.

[. INTRODUCTION

A number of remarkable experiments involving few elec-
trons in semiconductors and free space, metal particles, and
spin-1/2 atoms at low temperatures have been recently
reported.'? Only electrons are considered below. These col-
lections of electrons may be isolated or in thermal contact
with the environment, but, in any event, the number of par-
ticles is constant. The Fermi-Dirac (FD) distribution holds
when electrons may be freely exchanged with a large reser-
voir (grand-canonical ensemble), but is inaccurate for the
systems considered. The present paper provides simple and
accurate formulas for electron occupancy and fluorescence
for evenly spaced single-electron energy levels. Spontaneous
emission is supposed to be weak enough not to perturb im-
portantly the system state of equilibrium.* Only a vanish-
ingly small Coulomb interaction between electrons® is con-
sidered. The time required for the system to reagh
equilibrium is not needed because averagings are performed
over unlimited time scales. Quantum optics effects, such as
resonance fluorescence or superradiance, will not be consid-
ered.

The assumption of evenly spaced single-electron energy
levels is not as restrictive as one may think at first. Consider
indeed one-dimensional devices such as the quantum wires
employed in modern laser diodes.' If the wire is uniform
over its length and the valence and conduction bands are
parabolic in the energy-momentum space, the energy spacing
€ between adjacent levels is not a constant. However, the
variations of € may be neglected near the Fermi level as long
as the temperature is not too high. For zero-band-gap semi-
conductors such as Pby g,Sng 4 Te, the energy-momentum re-
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lationship is linear rather than parabolic, and € is exactly a
constant, Level spacings in small irregular metal particles
{with a size on the order of 10 nm) are nearly uniform as a
consequence of the mechanism of level “‘repulsion.” The
probability that adjacent levels are separated by e is, for the
appropriate ensemble, of the form e'exp(—¢€), a sharply
peaked function of €.* As is well known, the Landau levels
that describe electron motion in uniform magnetic fields® are
evenly spaced. These levels are highly degenerate, but the
coupling between degenerate states (expressing the drift of
electrons through the magnetic field lines) may be neglected
over some period of time. Likewise, two- or three-
dimensional harmonic oscillators, modeling, for example, the
confinement of electrons in traps, exhibit degenerate evenly
spaced levels. Our approach may be generalized to degener-
ate levels. It is appropriate to mention also that the density of
states of (two-dimensional) quantum wells with parabolic
bands is a constant within a subband. This implies that the
energy-level spacing is constant on the average. though not
exactly.

The amount of light spontaneously emitted by electronic
systems depends on the optical-mode density of state, which
is different for free-space, low-dimensional structures, or
photonic band-gap materials. It is not the purpose of the
present paper to discuss such problems. Because all compari-
sons are made at the same optical wavelength, terms depend-
ing on wavelength only (essentially the optical-mode density
of state) may be dropped. The quantity that we calculate is
the probability that the system exhibits an electron at level &
and a hole (no electron) at level k', with k—k'=fhw/e=d.
where fi denotes the Planck constant divided by 27 and w
the angular optical frequency of observation. In pure semi-
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conductors, electron-momentum conservation entails that
transitions may occur only symmetrically with respect to the
Fermi level, implying that k=(1+d)/2. k' =(1 —d)/2, with
odd d, if k=0 labels the zero-temperature top electron. We
will particularly consider the case where this condition holds.

Let us recall that, in statistical mechanics, isolated sys-
tems are described by microcanonical ensembles, systems
that may exchange energy but not particles with a reservoir
are described by canonical ensembles and systems that may
exchange both energy and particles with a reservoir are de-
scribed by grand-canonical ensembles. The Fermi-Dirac
distribution® is applicable to finite systems only in the latter
case. That is. the FD distribution is invalid for isolated sys-
tems and for systems that are in contact with an electrical
insulator such as diamond. In the present context, *‘finite™
(or “‘small’” or ‘‘mesoscopic’™) means that kg7, where T
denotes the absolute electron gas temperature, is not neces-
sarily large compared with the adjacent-level energy spac-
ings €. In grand-canonical ensembles, the fluorescence is
proportional to the product of the probabilities that the upper
level is occupied and that the lower level is empty. In ca-
nonical ensembles, it turns out that fluorescence is propor-
tional to the difference between lower and upper levels oc-
cupancies. This is apparently a new result.

Exact formulas for the level occupancy in finite single-
spin systems with evenly spaced levels in contact with a heat
bath have been reported before. ** ¥ Our method® consists of
first enumerating the microstates of isolated systems. Subse-
quent averaging provides expressions for the canonical occu-
pancies. This method is considerably simpler than the
second-quantization methods and integral-transformation
formulas employed in Refs. 4 and 8. The present paper gen-
eralizes the results reported in Ref. 6 to account for the fact
that some electrons may change spin in the course of time.
Simple, exact formulas for fluorescence are obtained for iso-
lated systems and canonical ensembles. For arbitrary level
energies and the canonical ensemble, known recurrence
formulas'’ arc satisfied by our more special, but explicit,
forms.

The FD distribution is derived in Sec. Il to set up the
notation and to recall why, in grand-canonical ensembles.
spin is properly accounted for by a twofold degeneracy. This
method of accounting for the electron spin, however, is in-
valid in microcanonical or canonical ensembles because un-
paired electrons may be in either one of two distinguishable
states. Finite systems that exchange energy but not particles
with a reservoir are considered in Secs. II1 and 1V. In Sec.
111, the electron spin is supposed to be strictly preserved and,
for simplicity, it is supposed that there are as many electrons
with spin up as with spin down. Formulas valid for single-
spin electrons need only be multiplied by factors of 2 in that
situation. In Sec. 1V, electrons are allowed to change spin in
the course of time (but not during a spontancous emission
event). For the sake of clarity, only essential formulas relat-
ing to canonical ensembles are given in the main text, de-
tailed derivations and intermediate results being relegated to
Appendixes A and B.

The purpose of Appendix A is to explain why the total
number W of microstates of isolated systems is related to the
partitions of integers. for single-spin-state electrons. It is
shown that the number m(k) of microstates whose level & is

occupied is simply related to W. The number m(k;k') of
microstates whose level k is occupied and level k” is empty
is shown to be simply related to m(k), and thus to W. Av-
eraging, with the Boltzmann factor as a weight, provides the
corresponding formulas in the canonical ensemble. Appendix
B explains how the possibility that electrons may change
spin in the course of time is accounted for.

IL. FERMI-DIRAC DISTRIBUTION

The probability p that a system in thermal and electrical
contact with a large medium contains N~ electrons with spin
up, N7 electrons with spin down, and energy U is propor-
tional to the corresponding number of medium states (sub-
scripts m) conveniently written as exp[S,(V,, N, .U,)] with
S,, the medium entropy. If the system-medium contact is
very weak, energies as well as particle numbers add up. A
first-order expansion of §,, with respect to its arguments then
gives

pINT . N™,U)=Cexp(—aN" —aN~— BU), (1

where C denotes a constant and

ﬂsﬂ‘f
P=50,"
as,, a5,
a=—pu=—tr=—2 (2)
Au aN N,

Here, B=1/kyT, where T denotes the temperature and g the
Fermi level. A single p value occurs because the medium
behavior is the same for electrons of opposite spins.

It follows from Eq. (1) that the probabilities p'” that a
nondegenerate state of energy €, is unoccupied, p'!’ that it is
occupied by an electron of either spin, and p'?' that it is
occupied by two electrons are, respectively,

pl!]i=(?_
pl | - CZ,
=7, (3)

with z=exp(—a—B¢). Nomalization (p'”'+2p'"+pt?
=1) gives C=1/(1+2)* The occupancy (average number
of electrons) nzp=2p"""+2p'? of level k is therefore

2 2

21 explBle—p)]+1 gl2kyy”
(4)

neplq k)=

where ¢ =exp(—/3) denotes the Boltzmann factor. In the last
expression it is assumed that €, =4k, where & denotes any
relative integer. The separation € between adjacent-level en-
ergies is taken as the energy unit, with a typical value for
1 -pm-long quantum wires of e=1 meV. In the last expres-
sion in Eq. (4), k=1 labels the level just above the top elec-
tronat T=0 K. and we have set u=%. Note that for large k
values, npp(g:k)=29"""2
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The average system energy added on top of the 7=0 K
energy is obtained by summing up the occupancy over all
levels, and subtracting a similar sum for the T=0 K distri-
bution. The result is®

% — (s)

r;;tq)=
. i g %+ 1

In grand-canonical ensembles, occupancies at different
levels are independent. For a single-spin state, this means
that the probability that level £ is occupied and level k' is
empty is the product of level k occupancy and (1 —level &’

occupancy). When the two-spin states are considered, we
obtain

nep(q.k) npplg,k")
Lpplg:kk')=2 FoH (l— g . (6)

. 2

L

Fluorescence may indeed occur for 8 out of the 16 possibili-
ties of occupancy of levels & and k' (no electron, spin-up
electron, spin-down electron, or two electrons for each of the
two levels). Because occupancies are independent, the sum
of the probabilities that fluorescence events occur is found to
be given by Eq. (6).

If the electron-momentum conservation law is enforced,
we have k=(1+d)/2. k'=(1—=4d)/2, and the FD fluores-
cence in Eq. (6) reads after rearranging

Leplg:d)= (7

(g~ di2y ) }2 i
Thus, the fluorescence in the grand-canonical ensemble is
given by a simple function of temperature T and angular
optical frequency of observation, w. We will see that the
canonical ensemble fluorescence is given by a simple series,

[1I. FLUORESCENCE WITHOUT SPIN FLIP

For single-spin electrons, the occupancy in isolated sys-
tems is given by a simple formula reported in Ref. 6. The
proof, omitted in Ref. 6, is given in Appendix A of the
present paper [see Eq. (A12)]. If the energy added to the
system is denoted by r, the number W(r) of configurations
of the system is equal here to the number p(r) of pariitions
of r. Indeed. microstates may be obtained by shifting elec-
trons upward from their 7=0 K locations by nonincreasing
steps that sum up to r. Let us recall that a partition of r is a
nonincreasing sequence of positive integers summing up to r,
For example, (2,1,1) is a partition of 4. The number p(4) of
partitions of 4 equals 5. By convention, p(0)=1 and p(r)
=0 if r<0.

To illustrate the difference existing between the exact re-
sult and the Fermi-Dirac distribution, let us note that, for any
microstate, the energy separation between the top electron
and the lowest hole cannot exceed re, where e denotes as
before the adjacent-level energy spacing. Accordingly, the
fluorescence drops abruptly at an angular optical frequency
w=re/fi. When r>1, a system temperature 7 may be
defined:® kHT*e\.-’GTf‘.-r. As an example, room-temperature
isolated systems with e=1 meV should not emit visible
light according to the exact formula, while some faint light is
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FIG. 1. Ratio of exact and Fermi-Dirac (#,p) occupancies plot-
ted as functions of ny at equal values of the average added energy
r. The isolated single-spin-state electron occupancy in (a) was mul-
tiplied by 2 1o account for the two-spin states. In (a) and (b) spin
flip is not allowed. In (c) electrons of different spins may exchange
energy but spin flip is not allowed. Cases (d) and (e) are the same as
cases (b) and (c), respectively, except that spin flip is allowed. (f)
collects previous results for an average added energy r= 600.

expected according to the FD distribution.

In the present section, it is supposed that the electron
spins are preserved in the course of time and that there are as
many electrons with spin up and spin down, for simplicity. It
then suffices to multiply the expressions for single-spin elec-
tron occupancy, average energy, and fluorescence, given in
Appendix A, by factors of 2.

The occupancy reads, according to Eq. (A13),

n‘,(q;k}=—2 [_l)_fq,r'ﬁ+ﬂ_r'—ln-'2' {3}
j=1x:.
Note that, for large k values, n,(g:k)~2¢" so that
n(q:k)/nip(g:k)= g, if the expression for nyp(g:k) in
Eq. (4) is used. _
The average added energy reads’

rlg)=2 3 —2 ©)
!

=iz g =1

We first compare in Fig. 1(a) the occupancy in isolated
systems with the FD occupancy. The former is obtained by
multiplying n(r;4) given in Eq. (A12) by a factor of 2 to
account for the two-spin states. The FD occupancy is given
in Eq. (4), with ¢ expressed in terms of the average energy »
with the help of Eq. (5). Note that, below 0.1, isolated-
system occupancies are smaller than FD occupancies.

Consider next the case where the system is in contact with
a heat bath. The ratio of the exact occupancy in Eq. (8)
[where g is expressed in terms of the average energy » with
the help of Eq. (9)] and the FD occupancy [Egs. (4) and (5)]
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FIG. 2. This figure is similar to Fig. 1. but the comparison
hetween canonical and grand-canonical ensembles is made at equal
temperatures rather than at equal average energies. The energy-
level spacing is supposed to be 1 meV, typical of 1-pm-long quan-
tum wires. The parameter is the electron-gas absolute temperature
T (a) Spin flip is not allowed. (b) Spin flip is allowed.

is represented in Fig, 1(b) as a function of the FD occupancy
for various values of the average energy r (namely, r= 6, 60,
and 600). Below 0.1, the exact occupancy exceeds the FD
occupancy. Figure 2(a) shows that, when the comparison is
made at equal temperatures 7 (instead of equal average en-
ergies), the opposite occurs. In Fig. 2, we have chosen to
represent the occupancy ratios as functions of the level num-
ber k (referred to the Fermi level) instead of the FD occu-
pancy.

To evaluate fluorescence, we need to know the number
m(r:k: k') of microstates of added energy r having an elec-
tron at level k and none at level A'=k—d, where d
=hw/e. Appendix A shows that this quantity is easily ex-
pressible in terms of the numbers m(7;k) of microstates hav-
ing an electron at level k (irrespectively of other state occu-
pancies). Averaging the result over r with ¢ as a weight to
account for energy fluctuations in the presence of a heat bath,
the fluorescence is found to be [see Eq. (A9)]

n,(q:k")—n,(q:k)

Lu':_f[;k.&r): ~7_1 )

(10)
q

where n,(q:k) is given in Eq. (8).
If the law of electron-momentum conservation is en-
forced, the fluorescence reads

l:d Te—d
) (1)

L!r(q:d}=i‘u ‘FT*T .

Recall that g=exp(—e€kgT) (where € is typically 1 meV
and room temperature corresponds to kyT=26 meV) and
d=tw!e. The fluorescence ratio L (q:d)/Lgp(q:d) accord-
ing to Eq. (7) and Eq. (11) is represented in Fig. 3(a) as a
function of « for different temperatures. It is interesting that
canomical and grand-canonical fluorescences almost coincide
at small wavelengths even though the occupancies are quite
different in that limit.

V. FLUORESCENCE WITH SPIN FLIP

Electron spins are now allowed to vary in the course of
time (but not during a fluorescence event). The numbers V"
and N~ of electrons with spin up and spin down. respec-
tively. may fluctuate, but their sum N*+N~ =N remains
constant if the system is isolated or in contact with an elec-

FIG. 3. Ratio of spontaneously emitted light power (fluores-
cence) from 1-gm-long quantum wires in contact with diamond
(canonical ensemble) and copper (grand-canonical ensemble), re-
spectively, as a function of d=ti w/ €. The parameter is the electron-
gas absolute temperature 7. (a) Spin flip is not allowed. (b) Spin flip
is allowed.

trically insulating heat sink such as diamond. The occupancy

and fluorescence for coupled-spin electrons is derived from

previous expressions through a succession of partitionings

and averagings. Because the details are lengthy, they are rel-

egated to Appendix B. Remarkably, many summations can

be performed in closed form so that the final result is simple.
The occupancy reads

S ¢ ng:k+))
jm—
nlgq:k)= T " (12)

> ¢

J=—0¢

where n,(g:k) is given in Eq. (8). Comparisons with the FD
distributions are exemplified in Figs. 1(d) and 2(b). With the
help of theta functions'? the average added energy may be
written as a simple sum [see Eq. (BS5)]

| (—=1)Vj
rdp)=2 X (’ e ’) (13)
=12 .. qi'_[ q.a‘_qj

The fluorescence reads [see Egs. (A14) and (B6)]

E‘: j:L( 1+ .+1—d)
'=—xq ul 4 2 s/ 2 J

Lg:d)=" - . (4)

where L, (g:k.k") is given in Eq. (10). Fluorescence is illus-
trated in Fig. 3(b). Note that the exact result is closer to the
FD result when electrons are allowed to change spin in the
course of time.

V. CONCLUSION

When a (possibly small) system is in thermal and electri-
cal contact with a large medium such as a piece of copper,
the average number of electrons occupying some energy
level (occupancy) is twice the value given by Fermi-Dirac
formula. The fluorescence (light spontaneously emitted with-
out electron-spin flip). defined in terms of the probability that
an electron at level k£ may drop to level k—# w/€e (w denotes
the angular optical frequency of observation), is also casily
obtained. But when the system is isolated or in thermal con-
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tact with an electrical insulator, electron occupancies are
given by different expressions. Because modern electronics
often employ short quantum wires supported by diamond
heat sinks, it is important to have at our disposal precise
expressions for occupancy and fluorescence in such situa-
tions. The expressions obtained in this paper were illustrated
by comparison with the FD results. We considered the case
where the electron spins are strictly maintained in the course
of time (Sec. I1I) and the case where spin flip is allowed
(Sec. IV). We found, for example, that small FD occupancies
should be multiplied by approximately exp(—e/2k,T)
~022if e=1 meV and T=4 K, a factor that differs sig-
nificantly from unity. But, unexpectedly, the fluorescence
turns out to be given rather accurately by the FD distribution.

Our mathematical approach is based on a direct enumera-
tion of the microstates, and the results are expressed in terms
of the number of partitions of integers. This method is con-
siderably simpler than those previously reported for similar
models, both conceptually and algebraically. A computer
simulation has given results that are in very good agreement
with the analytical formulas reported in this paper.

It is our intention to report in the future analytical and
numerical results relating to mesoscopic laser-diode light
fluctuations. A prelimmary step consists of considering
single-mode cavities incorporating the electron gas at ther-
mal equilibrium, with one or two bands of states (for a single
band, sece Appendix A of the present paper). The intraband
Auger effect and the stimulated transitions may be intro-
duced at that stage. Next, the probability that low-lying elec-
trons be promoted to high-lying levels by the action of a
(quiet or fluctuating) pump and the probability that light
quanta be absorbed are introduced. At low power, our simu-
lation gives output light fluctuations that agree very well
with elementary laser-noise theory prv.’.(:li(:lic.«ns.ls At high
power, new effects (temperature fluctuations, spectral-hole
burning. statistical fluctuations of the optical gain, ete.) occur
that are difficult to handle analytically.'® The analytical for-
mulas reported in this paper are helpful to assess the accu-
racy of the simulation in special situations.

APPENDIX A: OCCUPANCY AND FLUORESCENCE FOR
SINGLE-SPIN-STATE ELECTRONS: ARBITRARY
ENERGY LEVELS

We are only concerned in the main text with evenly
spaced one-electron energy levels {€;}. Rigorous occupancy
formulas are obtained in the present appendix by considering
first arbitrary {€;}. Eventually the number of levels is al-
lowed to go to infinity.

Consider an isolated system whose nondegenerate one-
electron level energies are, in increasing order, €, €, ...,
€. ..., €y, with N=<B single-spin electrons. According to
the Pauli principle each level may be occupied by only 0 or
| electron. The system energy U is therefore the sum of N of
the €. The purpose of this appendix is to evaluate the fol-
lowing.

(1) The number W(N.U) of possible ways of obtaining
some given U (number of microstates or “statistical
weight™).

(2) The number m(N,U;k) of microstates whose level k

is occupied. The occupancy n(N,Uzk) of level k is defined
as m(N,U; k) W(N,U).

(3) The number m(N,U:k:&") of microstates whose level
k is occupied and level &’ is empty. The fluorescence
L{N,U:k:k") emitted by electrons dropping from level & to
level k' is defined as m(N.U:k:k" )/ W(N.U).

These evaluations will be presented in reversed order. Let
us first relate the number m(N. U;k; k") of microstates whose
level k is occupied and level &' is empty to the numbers
m(N,U:k) defined above. For each microstate, let the elec-
tron at level k be transferred to the lower empty level k. The
number N of electrons is unaffected but the total energy gets
reduced from U to U—d where d= €;— €;:>0, and the roles
of k and k' are reversed. The equality

m(N.U;k:k"Yy=m(N,U—d;k" k) (Al)

therefore holds. Now notice that

m(N.U:k)—m(N,Usk: k" y=m(N,U;k"Yy—m(N,U; k" ; k)
(A2)

because the two sides of the above equation count mi-
crostates whose levels k and k" are both occupied. When the
expression in Eq. (A2) is introduced into Eq. (Al) iteration
gives a recurrence relation for m(N,U:k:k") that reads

m(NUsk;k")= Z
7

..
X[m(N,U—jd;k")—m(N,U—jd;k)].
(A3)

The above series terminates when the total energy vanishes,
i.e., when jd exceeds U.

Consider next the m(N,U;k) microstates whose levels &
are occupied, and remove these electrons. The same number
of microstates is obtained, with N=1 electrons, total energy
U/— €, , and no electron at level k. The number of these new
microstates may be written as the difference between the
total number of microstates and the number of microstates
whose level k is occupied. We have therefore the identity

m(N,U:k)=W(N=1,U—€)—m(N—1,U—¢€ k).
(Ad)

After a sufficient number of iterations, either the energy or
the number of electrons becomes negative and the last term
vanishes. The quantity m(N,U;k) may therefore be written
as a finite sum

m(N,Usk)=— .2 (—1YW(N=j.U-j€).
=12
(AS)

The series terminates when j exceeds either N or U/e; .

We have the obvious identity (the number of occupied
states for the whole set of microstates being written in two
different manners)

NW(N,U)= 2, m(N,U;k). (A6)
k=1
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A system in contact with a heat bath at temperature 7T is
described by the canonical ensemble. Let us define as in the
main text g =exp(— ), where = 1/k;47. The so-called par-
tition function Z(N.g} is the sum over U t:lfqrL W(N,U), and
the average energy is (g/Z)dZ(N.q)/dg. When both sides of
Eq. (A6) are multiplied by g% and summed over U we ob-
tain, using Eq. (A3),

1 . .
g ‘Z L (=1Y2(14)2(N=j.q).
(A7)

Indeed, for a single electron (N=1). U may only take
one of the €, values and the statistical weight W is unity. It
follows that Z(1,q) is the sum over & from 1 to B of g*.
Note that Z(0.g)=1. Equation (A7) was obtained earlier'®
from a less direct proof.

The occupancy (average number of electrons) n(g:k) of
level & is equal to the sum over U oqum(N. U:k), divided
by Z(N.g), where m(N,U;k) is given in Eq. (A5) and
Z(N,q) is defined in Eq. (A7) from a recurrence relation.
Thus

= 2 (=1Ygn2(N=jg)
J=12 0
nig:k)=— E . (AB)
¢ ZN.g) |
Expression (A8) was reported before.'”

The probability that level k be occupied and that level &’
be empty at temperature T is similarly obtained by summing
g “m(N,U:k:k") over U, and dividing the result by Z(N,q),
where m(N,U:k:k") is given in Eq. (A3). The result of the
summation may be expressed as the difference of the lower
and upper occupancies, according to

P AL v .
O Ll Al il (A9)
qq.' —&—1
where the occupancy n(g:k) is given in Eq. (A8). Thus the
fluorescence is equal to the difference between the occupan-
cies at £" and k multiplied by the Bose function.

Let us now specialize the above formulas for the case
where €=k, k=1,..., B. Considering the displacement of
the N electrons from their least-energy locations (k= 1-N)
beginning to the one on top, we observe that W(N,U) is the
number p(P;N,r) of partitions of the added energy r=U
—N(N+1)/2 into at most N parts, none of them exceeding
P=RB— N. Note that the numbers p( P:N.r) may be obtained
from a recurrence relation.'' p(P;N.r)—p(P:N—1.r)
=p(P—1:;N,r—N). Let us now change slightly our nota-
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tion. letting k=0 denote the top electron in the least-energy
configuration, and let us employ the added energy r instead
of the total energy U as an argument. Equation (AS5) reads

m(N.rik)=— z (—1¥

=12 ...
Xp(P+jiN=j.r—jk=j(i=1)/2).
(A10)

If r does not exceed N and P, it is intuitive that
P(P:N,r)=p(r). where p(r) denotes the number of unre-
stricted partitions of r. Equation (A10) then simplifies to

m(rik)=- 2 (— 1Y p(r—jk—j(j—1)12).
J=12....
(All)

This expression was reported (for the first time to our knowl-
edge) in Ref. 6. If N and P are infinite ({&;} =%), Eq. (Al1)
holds for any finite value of » and the corresponding single-
spin-state occupancy of an isolated system is

nirik)=mirik) pir). (Al2)

Averaging the numerator and denominator of above expres-
sion with ¢" as a weight with r from 0 to = gives the ca-
nonical occupancy®

n(qg;k)=— . (= 1Y g/tHiu=n2  (A13)
g Lo B

Finally the expression in Eq. (A9) simplifies in the present
situation to

nig:k')—nig:k)

Lig:k,k")= -
t,'"' ~k_

(A14)

We have set up a Monte Carlo simulation program that
enables us to recover previous analytical expressions. For the
case of isolated systems, a constant probability per unit time
is ascribed to level-changing events that preserve energy.
The system eventually reaches a state of equilibrium with an
electron distribution very close to the one derived from pre-
vious recurrence formulas. The Fermi-Dirac distribution is
obtained in the limit of large B values, with temperatures and
Fermi levels that depend on the energy given initially to the
system, Our computer program may handle single-electron-
level distributions that could be difficult to analyze theoreti-
cally (for example, two bands of states).

When the system is in thermal contact with a heat bat,
electrons at level & are ascribed a probability per unit time, p,
of being demoted to level k—1 and a probability g p of being
promoted to level k+1, provided these levels are empty.
Strictly speaking, these prescriptions rest on an Einstein-type
model of solids that supposes that the atoms are vibrating at
frequency w00 = €/fi. where € denotes as before the elec-
tronic level spacing. But the details of the thermalization
model turn out to be rather unimportant. The computer pro-
gram enabled us to reproduce the theoretical results with
great accuracy. For example, when 8=100, e=1 meV, and
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T=100 K, the numerical distribution fits the Fermi-Dirac
distribution with a discrepancy not exceeding 0.2%.

When the electron gas is enclosed in a single-mode cav-
ity. the probability that the cavity contains m light quanta i_s
proportional to W( r—md), where W(r) denotes the statisti-
cal weight of the electron gas for an addet_.‘i energy r; see
Appendix B of Ref. 6. If, initially. only the highest ]e\:'els are
occupied, we obtain exactly, from the recurrence relation sat-
isfied by p(P;N,r), variance(m)/average(m)=(B+1)/6.

APPENDIX B: OCCUPANCY AND FLUORESCENCE
FOR TWO-SPIN-STATE ELECTRONS

In the present appendix we restrict ourselves to energy
levels e,=k, with k=1.2,.... the origin of the energy be-
ing set at k=0. Electrons are allowed to change spin in thc
course of time. We first consider an isolated system with
constant numbers of spin-up and spin-down electrons (N~
and N~, respectively), electrons of different spins being al-
lowed to exchange energy. Next, spin flip is allowed. Aver-
aging, with the Boltzmann factor as a weighl provides occu-
pancies for the case where the systems are in contact w:u:h a
heat bath. Occupancies in these various situations are 1l_lus-
trated in Fig. 1. again by comparison with the FD distribu-
tion.

Consider first an isolated system with N spin-up elec-
trons and N~ spin-down electrons, and suppose that the two
subsystems may exchange energy but that spin flip is not
allowed. Setting N +N"=2N and N7 — N =2n, the sys-
tem least energy is

NT(NT+1) N (N +1)
fae= +

i 3
o 3 P =N(N+1)+n~,

(B1)

If ¥=n’ denotes the energy added to the system on top of
N(N+1), the remaining energy s=r—a° splits into r| in
subsystem 1 and #,=s—r; in subsystem 2.

We have shown in Appendix A that, for the case presently
considered and in the limit N— 2, the number of microstates
for single-spin electrons is the number of partitions p(_r-'} of
the excess energy r. The number of microstates relating to
one particular splitting of 5 is therefore p(r()p(r2). Accur_d-
ingly, occupancies are obtained by averaging §mg|e-spm-
state occupancies shifted by * », with a probability law pro-
portional to p(r,)p(s—r;) with | running from 0 to s:

n(rik)

2 [m(ry:k—n)p(s—r)+mis—r k+n)plr]
£y

iy L]

z pls=ryplry)

(B2)

where m(r:k) is given by Eq. (All). Figure I{c) compares
n,(r:k) in Eq. (B2) to ngp in Egs. (4) and (5) for the case
where n=0 (N*=N" or r=s) and various values of the
added energy. ‘

When spin flip is allowed, N' + N~ =2N remains fixed,
but n=(N*"—=N )/2 may take any value that does not ex-
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ceed \r. where r denotes as before the energy added on top
of N(N+1). If r=46. for example, five values of n are per-
mitted, namely. n=0, n= =1, and n==2. It thus suffices to
sum the numerator and denominator of Eq. (B2) over per-
missible values of n. The occupancy reads

nrik)

z 2 [m(r sk=—n)pls—=r)tmls—r k+mipir)]

n rl
> 2 pls—rplr)
i "

(B3)

where the sum over r, is from 0 to s=r—n’, and m(r:k) is
given Eq. (Al1). The two terms in the numerator give equal
contributions. Figure 1(e) compares n,(r;k) as given in Eq.
(B3) with the FD distribution for various values of the added
energy.

When the system is in contact with a heat bath at tem-
perature reciprocal B, r fluctuates with a probability law ¢°
where, as before, g =exp(— ). Accordingly, occupancies are
obtained by multiplying the numerator and denominator of
the previous expression in Eq. (B3) by ¢" and summing over
r from 0 to . The denominator gives the sum over states

M9)=2 ¢ 2 2 plr)plr—n’=r)

=( » q’p{rl)uz q"!, (B4)

g 2 )
which may be written as an infinite product.'” The average
added energy reads

rdg)=— - R

q 4z’ ( 2j (=12
Z# dg  j=i2... \g

(BS)

The expression for the occupancy may be rec%uced to a
double sum, which coincides with the one given in Eg. (8),
shifted by =» and weighted by ¢"". This final result is in-
tuitive since unbalancing between N7 and N~ increments
the energy by n°. We have

E [n(g:k—m)+niq:k+n)lg"

n(q:k)= . (B6)

Z qu*’

where the sums over » run from —x to +=, and n(g;k) is
given in Eq. (A13). The two terms in the numerator give the
same contributions. The occupancy n.(g;k) may l?e ex-
pressed as a function of the average encrgy and & with the
help of Eq. (BS). Comparison with the FD distribution is in
Fig. 1(e). N
Similarly the fluorescence is obtained by shifting k by n

with a weight factor ¢" .
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